Suppr超能文献

台湾老年和高龄人群肾脏替代治疗成本与死亡率的人工智能预测模型

Artificial Intelligence Prediction Model for the Cost and Mortality of Renal Replacement Therapy in Aged and Super-Aged Populations in Taiwan.

作者信息

Lin Shih-Yi, Hsieh Meng-Hsuen, Lin Cheng-Li, Hsieh Meng-Ju, Hsu Wu-Huei, Lin Cheng-Chieh, Hsu Chung Y, Kao Chia-Hung

机构信息

Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.

Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung 404, Taiwan.

出版信息

J Clin Med. 2019 Jul 9;8(7):995. doi: 10.3390/jcm8070995.

Abstract

BACKGROUND

Prognosis of the aged population requiring maintenance dialysis has been reportedly poor. We aimed to develop prediction models for one-year cost and one-year mortality in aged individuals requiring dialysis to assist decision-making for deciding whether aged people should receive dialysis or not.

METHODS

We used data from the National Health Insurance Research Database (NHIRD). We identified patients first enrolled in the NHIRD from 2000-2011 for end-stage renal disease (ESRD) who underwent regular dialysis. A total of 48,153 Patients with ESRD aged ≥65 years with complete age and sex information were included in the ESRD cohort. The total medical cost per patient (measured in US dollars) within one year after ESRD diagnosis was our study's main outcome variable. We were also concerned with mortality as another outcome. In this study, we compared the performance of the random forest prediction model and of the artificial neural network prediction model for predicting patient cost and mortality.

RESULTS

In the cost regression model, the random forest model outperforms the artificial neural network according to the mean squared error and mean absolute error. In the mortality classification model, the receiver operating characteristic (ROC) curves of both models were significantly better than the null hypothesis area of 0.5, and random forest model outperformed the artificial neural network. Random forest model outperforms the artificial neural network models achieved similar performance in the test set across all data.

CONCLUSIONS

Applying artificial intelligence modeling could help to provide reliable information about one-year outcomes following dialysis in the aged and super-aged populations; those with cancer, alcohol-related disease, stroke, chronic obstructive pulmonary disease (COPD), previous hip fracture, osteoporosis, dementia, and previous respiratory failure had higher medical costs and a high mortality rate.

摘要

背景

据报道,需要维持性透析的老年人群预后较差。我们旨在建立老年透析患者一年费用和一年死亡率的预测模型,以辅助决策老年人是否应接受透析治疗。

方法

我们使用了国民健康保险研究数据库(NHIRD)的数据。我们确定了2000年至2011年首次纳入NHIRD的终末期肾病(ESRD)患者,这些患者接受了定期透析。ESRD队列纳入了48153例年龄≥65岁且年龄和性别信息完整的ESRD患者。ESRD诊断后一年内每位患者的总医疗费用(以美元计)是我们研究的主要结局变量。我们还关注死亡率这一另一结局。在本研究中,我们比较了随机森林预测模型和人工神经网络预测模型在预测患者费用和死亡率方面的性能。

结果

在费用回归模型中,根据均方误差和平均绝对误差,随机森林模型优于人工神经网络模型。在死亡率分类模型中,两个模型的受试者工作特征(ROC)曲线均显著优于零假设面积0.5,且随机森林模型优于人工神经网络模型。在所有数据的测试集中,随机森林模型优于人工神经网络模型,二者表现相似。

结论

应用人工智能建模有助于提供关于老年和高龄人群透析后一年结局的可靠信息;患有癌症、酒精相关疾病、中风、慢性阻塞性肺疾病(COPD)、既往髋部骨折、骨质疏松症、痴呆症和既往呼吸衰竭的患者医疗费用更高且死亡率更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad91/6678226/acf0f449b223/jcm-08-00995-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验