MRC Biostatistics Unit, University of Cambridge, Cambridge Institute of Public Health, Forvie Site, Robinson Way, Cambridge Biomedical Campus, Cambridge, CB2 0SR, UK.
JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Trust Center for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK.
Nat Commun. 2019 Jul 19;10(1):3216. doi: 10.1038/s41467-019-11271-0.
Thousands of genetic variants are associated with human disease risk, but linkage disequilibrium (LD) hinders fine-mapping the causal variants. Both lack of power, and joint tagging of two or more distinct causal variants by a single non-causal SNP, lead to inaccuracies in fine-mapping, with stochastic search more robust than stepwise. We develop a computationally efficient multinomial fine-mapping (MFM) approach that borrows information between diseases in a Bayesian framework. We show that MFM has greater accuracy than single disease analysis when shared causal variants exist, and negligible loss of precision otherwise. MFM analysis of six immune-mediated diseases reveals causal variants undetected in individual disease analysis, including in IL2RA where we confirm functional effects of multiple causal variants using allele-specific expression in sorted CD4 T cells from genotype-selected individuals. MFM has the potential to increase fine-mapping resolution in related diseases enabling the identification of associated cellular and molecular phenotypes.
数千种遗传变异与人类疾病风险相关,但连锁不平衡(LD)阻碍了对因果变异的精细映射。缺乏效力,以及单个非因果 SNP 共同标记两个或更多不同的因果变异,都会导致精细映射的不准确性,随机搜索比逐步搜索更稳健。我们开发了一种计算效率高的多项精细映射(MFM)方法,该方法在贝叶斯框架下在疾病之间借用信息。我们表明,当存在共享的因果变异时,MFM 比单疾病分析具有更高的准确性,而在其他情况下则几乎没有精度损失。对六种免疫介导的疾病进行 MFM 分析揭示了在个体疾病分析中未检测到的因果变异,包括在 IL2RA 中,我们使用来自基因型选择个体的分选 CD4 T 细胞中的等位基因特异性表达来证实多个因果变异的功能效应。MFM 有可能提高相关疾病的精细映射分辨率,从而能够识别相关的细胞和分子表型。