Zou Yuxin, Carbonetto Peter, Xie Dongyue, Wang Gao, Stephens Matthew
Department of Statistics, University of Chicago, Chicago, IL, USA.
Regeneron Genetics Center, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA.
bioRxiv. 2024 Jun 18:2023.04.14.536893. doi: 10.1101/2023.04.14.536893.
We introduce mvSuSiE, a multi-trait fine-mapping method for identifying putative causal variants from genetic association data (individual-level or summary data). mvSuSiE learns patterns of shared genetic effects from data, and exploits these patterns to improve power to identify causal SNPs. Comparisons on simulated data show that mvSuSiE is competitive in speed, power and precision with existing multi-trait methods, and uniformly improves on single-trait fine-mapping (SuSiE) in each trait separately. We applied mvSuSiE to jointly fine-map 16 blood cell traits using data from the UK Biobank. By jointly analyzing the traits and modeling heterogeneous effect sharing patterns, we discovered a much larger number of causal SNPs (>3,000) compared with single-trait fine-mapping, and with narrower credible sets. mvSuSiE also more comprehensively characterized the ways in which the genetic variants affect one or more blood cell traits; 68% of causal SNPs showed significant effects in more than one blood cell type.
我们介绍了mvSuSiE,一种用于从遗传关联数据(个体水平数据或汇总数据)中识别潜在因果变异的多性状精细定位方法。mvSuSiE从数据中学习共享遗传效应的模式,并利用这些模式提高识别因果单核苷酸多态性(SNP)的能力。在模拟数据上的比较表明,mvSuSiE在速度、能力和精度方面与现有的多性状方法具有竞争力,并且在每个性状上分别对单性状精细定位(SuSiE)有一致的改进。我们应用mvSuSiE,利用英国生物银行的数据对16种血细胞性状进行联合精细定位。通过联合分析这些性状并对异质效应共享模式进行建模,与单性状精细定位相比,我们发现了更多数量的因果SNP(超过3000个),且可信集更窄。mvSuSiE还更全面地刻画了遗传变异影响一种或多种血细胞性状的方式;68%的因果SNP在不止一种血细胞类型中显示出显著效应。