Suppr超能文献

基于深度学习的胃肠道解剖标志和病变组织的精确识别。

MAPGI: Accurate identification of anatomical landmarks and diseased tissue in gastrointestinal tract using deep learning.

机构信息

Department of Electrical and Computer Engineering, Quality of Life Technology Laboratory, University of Texas at Dallas, Richardson, TX, 75080, USA.

出版信息

Comput Biol Med. 2019 Aug;111:103351. doi: 10.1016/j.compbiomed.2019.103351. Epub 2019 Jul 10.

Abstract

Automatic detection of anatomical landmarks and diseases in medical images is a challenging task which could greatly aid medical diagnosis and reduce the cost and time of investigational procedures. Also, two particular challenges of digital image processing in medical applications are the sparsity of annotated medical images and the lack of uniformity across images and image classes. This paper presents methodologies for maximizing classification accuracy on a small medical image dataset, the Kvasir dataset, by performing robust image preprocessing and applying state-of-the-art deep learning. Images are classified as being or involving an anatomical landmark (pylorus, z-line, cecum), a diseased state (esophagitis, ulcerative colitis, polyps), or a medical procedure (dyed lifted polyps, dyed resection margins). A framework for modular and automatic preprocessing of gastrointestinal tract images (MAPGI) is proposed, which applies edge removal, contrast enhancement, filtering, color mapping and scaling to each image in the dataset. Gamma correction values are automatically calculated for individual images such that the mean pixel value for each image is normalized to 90 ± 1 in a 0-255 pixel value range. Three state-of-the-art neural networks architectures, Inception-ResNet-v2, Inception-v4, and NASNet, are trained on the Kvasir dataset, and their classification performance is juxtaposed on validation data. In each case, 85% of the images from the Kvasir dataset are used for training, while the other 15% are reserved for validation. The resulting accuracies achieved using Inception-v4, Inception-ResNet-v2, and NASNet were 0.9845, 0.9848, and 0.9735, respectively. In addition, Inception-v4 achieved an average of 0.938 precision, 0.939 recall, 0.991 specificity, 0.938 F1 score, and 0.929 Matthews correlation coefficient (MCC). Bootstrapping provided NASNet, the worst performing model, a lower bound of 0.9723 accuracy on the 95% confidence interval.

摘要

医学图像中解剖标志和疾病的自动检测是一项具有挑战性的任务,它可以极大地辅助医学诊断并降低研究程序的成本和时间。此外,医学应用中数字图像处理的两个特别挑战是注释医学图像的稀疏性以及图像和图像类之间缺乏一致性。本文提出了在 Kvasir 数据集上最大化小医学图像数据集分类准确性的方法,该数据集通过执行稳健的图像预处理和应用最先进的深度学习来实现。图像被分类为存在或涉及解剖标志(幽门、Z 线、盲肠)、患病状态(食管炎、溃疡性结肠炎、息肉)或医学程序(染色提起的息肉、染色切除边缘)。提出了一种用于胃肠道图像的模块化和自动预处理框架(MAPGI),该框架对数据集的每张图像应用边缘去除、对比度增强、滤波、颜色映射和缩放。为每个图像自动计算伽马校正值,使得图像的每个像素值的平均值在 0-255 像素值范围内归一化为 90±1。在 Kvasir 数据集上训练了三个最先进的神经网络架构,Inception-ResNet-v2、Inception-v4 和 NASNet,并在验证数据上比较了它们的分类性能。在每种情况下,使用 Kvasir 数据集的 85%的图像进行训练,而其余 15%保留用于验证。使用 Inception-v4、Inception-ResNet-v2 和 NASNet 获得的准确率分别为 0.9845、0.9848 和 0.9735。此外,Inception-v4 实现了平均 0.938 的精确率、0.939 的召回率、0.991 的特异性、0.938 的 F1 得分和 0.929 的马修斯相关系数(MCC)。自举为表现最差的模型 NASNet 提供了 95%置信区间的 0.9723 准确率的下限。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验