Suppr超能文献

基于EfficientNetB0和特征金字塔网络的磁共振成像扫描中胃肠道器官语义分割

EfficientNetB0 cum FPN Based Semantic Segmentation of Gastrointestinal Tract Organs in MRI Scans.

作者信息

Sharma Neha, Gupta Sheifali, Reshan Mana Saleh Al, Sulaiman Adel, Alshahrani Hani, Shaikh Asadullah

机构信息

Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.

Department of Information Systems, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia.

出版信息

Diagnostics (Basel). 2023 Jul 18;13(14):2399. doi: 10.3390/diagnostics13142399.

Abstract

The segmentation of gastrointestinal (GI) organs is crucial in radiation therapy for treating GI cancer. It allows for developing a targeted radiation therapy plan while minimizing radiation exposure to healthy tissue, improving treatment success, and decreasing side effects. Medical diagnostics in GI tract organ segmentation is essential for accurate disease detection, precise differential diagnosis, optimal treatment planning, and efficient disease monitoring. This research presents a hybrid encoder-decoder-based model for segmenting healthy organs in the GI tract in biomedical images of cancer patients, which might help radiation oncologists treat cancer more quickly. Here, EfficientNet B0 is used as a bottom-up encoder architecture for downsampling to capture contextual information by extracting meaningful and discriminative features from input images. The performance of the EfficientNet B0 encoder is compared with that of three encoders: ResNet 50, MobileNet V2, and Timm Gernet. The Feature Pyramid Network (FPN) is a top-down decoder architecture used for upsampling to recover spatial information. The performance of the FPN decoder was compared with that of three decoders: PAN, Linknet, and MAnet. This paper proposes a segmentation model named as the Feature Pyramid Network (FPN), with EfficientNet B0 as the encoder. Furthermore, the proposed hybrid model is analyzed using Adam, Adadelta, SGD, and RMSprop optimizers. Four performance criteria are used to assess the models: the Jaccard and Dice coefficients, model loss, and processing time. The proposed model can achieve Dice coefficient and Jaccard index values of 0.8975 and 0.8832, respectively. The proposed method can assist radiation oncologists in precisely targeting areas hosting cancer cells in the gastrointestinal tract, allowing for more efficient and timely cancer treatment.

摘要

胃肠道(GI)器官的分割在胃肠道癌的放射治疗中至关重要。它有助于制定有针对性的放射治疗计划,同时将对健康组织的辐射暴露降至最低,提高治疗成功率并减少副作用。胃肠道器官分割中的医学诊断对于准确的疾病检测、精确的鉴别诊断、最佳的治疗计划和有效的疾病监测至关重要。本研究提出了一种基于混合编码器 - 解码器的模型,用于在癌症患者的生物医学图像中分割胃肠道中的健康器官,这可能有助于放射肿瘤学家更快地治疗癌症。在这里,EfficientNet B0用作自下而上的编码器架构进行下采样,通过从输入图像中提取有意义且具有区分性的特征来捕获上下文信息。将EfficientNet B0编码器的性能与三个编码器的性能进行比较:ResNet 50、MobileNet V2和Timm Gernet。特征金字塔网络(FPN)是一种自上而下的解码器架构,用于上采样以恢复空间信息。将FPN解码器的性能与三个解码器的性能进行比较:PAN、Linknet和MAnet。本文提出了一种名为特征金字塔网络(FPN)的分割模型,以EfficientNet B0作为编码器。此外,使用Adam、Adadelta、SGD和RMSprop优化器对所提出的混合模型进行分析。使用四个性能标准来评估模型:杰卡德系数和骰子系数、模型损失和处理时间。所提出的模型分别可以实现0.8975的骰子系数和0.8832的杰卡德指数值。所提出的方法可以帮助放射肿瘤学家精确地靶向胃肠道中容纳癌细胞的区域,从而实现更高效、及时的癌症治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7905/10377822/1170d08d5783/diagnostics-13-02399-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验