基于深度学习的内镜图像胃肠道疾病诊断预测模型。

Deep learning-based prediction model for diagnosing gastrointestinal diseases using endoscopy images.

机构信息

Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab 160062, India.

Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.

出版信息

Int J Med Inform. 2023 Sep;177:105142. doi: 10.1016/j.ijmedinf.2023.105142. Epub 2023 Jul 5.

Abstract

BACKGROUND

Gastrointestinal (GI) infections are quite common today around the world. Colonoscopy or wireless capsule endoscopy (WCE) are noninvasive methods for examining the whole GI tract for abnormalities. Nevertheless, it requires a great deal of time and effort for doctors to visualize a large number of images, and diagnosis is prone to human error. As a result, developing automated artificial intelligence (AI) based GI disease diagnosis methods is a crucial and emerging research area. AI-based prediction models may lead to improvements in the early diagnosis of gastrointestinal disorders, assessing severity, and healthcare systems for the benefit of patients as well as clinicians. The focus of this research is on the early diagnosis of gastrointestinal diseases using a convolution neural network (CNN) to enhance diagnosis accuracy.

METHODS

Various CNN models (baseline model and using transfer learning (VGG16, InceptionV3, and ResNet50)) were trained on a benchmark image dataset, KVASIR, containing images from inside the GI tract using n-fold cross-validation. The dataset comprises images of three disease states-polyps, ulcerative colitis, and esophagitis-as well as images of the healthy colon. Data augmentation strategies together with statistical measures were used to improve and evaluate the model's performance. Additionally, the test set comprising 1200 images was used to evaluate the model's accuracy and robustness.

RESULTS

The CNN model using the weights of the ResNet50 pre-trained model achieved the highest average accuracy of approximately 99.80% on the training set (100% precision and approximately 99% recall) and accuracies of 99.50% and 99.16% on the validation and additional test set, respectively, while diagnosing GI diseases. When compared to other existing systems, the proposed ResNet50 model outperforms them all.

CONCLUSION

The findings of this study indicate that AI-based prediction models using CNNs, specifically ResNet50, can improve diagnostic accuracy for detecting gastrointestinal polyps, ulcerative colitis, and esophagitis. The prediction model is available at https://github.com/anjus02/GI-disease-classification.git.

摘要

背景

全球范围内,胃肠道(GI)感染十分常见。结肠镜检查或无线胶囊内镜(WCE)是非侵入性方法,可用于检查整个胃肠道是否存在异常。然而,医生需要花费大量时间和精力来查看大量图像,且诊断易出现人为错误。因此,开发基于人工智能(AI)的胃肠道疾病诊断方法是一个至关重要且新兴的研究领域。基于 AI 的预测模型可能会改善胃肠道疾病的早期诊断、评估严重程度以及医疗保健系统,从而使患者和临床医生受益。本研究的重点是使用卷积神经网络(CNN)来提高诊断准确性,实现胃肠道疾病的早期诊断。

方法

使用 KVASIR 基准图像数据集对各种 CNN 模型(基线模型和使用迁移学习(VGG16、InceptionV3 和 ResNet50)的模型)进行训练,该数据集包含来自胃肠道内部的图像,采用 n 折交叉验证。该数据集包含三种疾病状态(息肉、溃疡性结肠炎和食管炎)以及健康结肠的图像。使用数据增强策略和统计措施来提高和评估模型的性能。此外,还使用包含 1200 张图像的测试集来评估模型的准确性和稳健性。

结果

在训练集上,使用 ResNet50 预训练模型的权重的 CNN 模型实现了约 99.80%的平均最高准确率(100%的精确率和约 99%的召回率),在验证集和附加测试集上的准确率分别为 99.50%和 99.16%,可用于诊断胃肠道疾病。与其他现有系统相比,所提出的 ResNet50 模型表现最佳。

结论

本研究结果表明,基于 CNN 的 AI 预测模型,特别是 ResNet50,可以提高检测胃肠道息肉、溃疡性结肠炎和食管炎的诊断准确性。预测模型可在 https://github.com/anjus02/GI-disease-classification.git 上获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索