Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India.
University College Dublin, Dublin, Ireland.
PLoS One. 2024 May 8;19(5):e0302880. doi: 10.1371/journal.pone.0302880. eCollection 2024.
Gastrointestinal (GI) cancer is leading general tumour in the Gastrointestinal tract, which is fourth significant reason of tumour death in men and women. The common cure for GI cancer is radiation treatment, which contains directing a high-energy X-ray beam onto the tumor while avoiding healthy organs. To provide high dosages of X-rays, a system needs for accurately segmenting the GI tract organs. The study presents a UMobileNetV2 model for semantic segmentation of small and large intestine and stomach in MRI images of the GI tract. The model uses MobileNetV2 as an encoder in the contraction path and UNet layers as a decoder in the expansion path. The UW-Madison database, which contains MRI scans from 85 patients and 38,496 images, is used for evaluation. This automated technology has the capability to enhance the pace of cancer therapy by aiding the radio oncologist in the process of segmenting the organs of the GI tract. The UMobileNetV2 model is compared to three transfer learning models: Xception, ResNet 101, and NASNet mobile, which are used as encoders in UNet architecture. The model is analyzed using three distinct optimizers, i.e., Adam, RMS, and SGD. The UMobileNetV2 model with the combination of Adam optimizer outperforms all other transfer learning models. It obtains a dice coefficient of 0.8984, an IoU of 0.8697, and a validation loss of 0.1310, proving its ability to reliably segment the stomach and intestines in MRI images of gastrointestinal cancer patients.
胃肠道(GI)癌症是胃肠道中主要的肿瘤,是男性和女性肿瘤死亡的第四大主要原因。GI 癌症的常见治疗方法是放射治疗,它包括将高能 X 射线束导向肿瘤,同时避免健康器官受到影响。为了提供高剂量的 X 射线,系统需要准确地对胃肠道器官进行分割。本研究提出了一种用于 MRI 图像中胃肠道小肠和大肠及胃的语义分割的 UMobileNetV2 模型。该模型在收缩路径中使用 MobileNetV2 作为编码器,在扩展路径中使用 UNet 层作为解码器。该模型使用了包含 85 名患者和 38496 张图像的 UW-Madison 数据库进行评估。这种自动化技术具有通过帮助放射肿瘤学家对胃肠道器官进行分割来提高癌症治疗速度的能力。将 UMobileNetV2 模型与三种迁移学习模型(Xception、ResNet 101 和 NASNet mobile)进行了比较,这些模型被用作 UNet 架构中的编码器。该模型使用了三种不同的优化器,即 Adam、RMS 和 SGD 进行了分析。在结合 Adam 优化器的情况下,UMobileNetV2 模型的表现优于所有其他迁移学习模型。它获得了 0.8984 的骰子系数、0.8697 的 IoU 和 0.1310 的验证损失,证明了它能够可靠地分割胃肠道癌症患者的 MRI 图像中的胃和肠。