Suppr超能文献

[类脑脉冲神经网络及其神经形态芯片研究综述]

[A review of brain-like spiking neural network and its neuromorphic chip research].

作者信息

Zhang Huigang, Xu Guizhi, Guo Jiarong, Guo Lei

机构信息

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, P.R.China.

Tianjin Key Laboratory of Bioelectromagnetic Technology and Intelligent Health, Hebei University of Technology, Tianjin 300130, P.R.China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Oct 25;38(5):986-994. doi: 10.7507/1001-5515.202011005.

Abstract

Under the current situation of the rapid development of brain-like artificial intelligence and the increasingly complex electromagnetic environment, the most bionic and anti-interference spiking neural network has shown great potential in computing speed, real-time information processing, and spatiotemporal data processing. Spiking neural network is the core part of brain-like artificial intelligence, which realizes brain-like computing by simulating the structure of biological neural network and the way of information transmission. This article first summarizes the advantages and disadvantages of the five models, and analyzes the characteristics of several network topologies. Then, it summarizes the spiking neural network algorithms. The unsupervised learning based on spike timing dependent plasticity (STDP) rules and four types of supervised learning algorithms are analyzed. Finally, the research on brain-like neuromorphic chips at home and abroad are reviewed. This paper aims to provide learning ideas and research directions for new colleagues in the field of spiking neural network.

摘要

在类脑人工智能快速发展和电磁环境日益复杂的当前形势下,最具仿生特性和抗干扰能力的脉冲神经网络在计算速度、实时信息处理以及时空数据处理方面展现出了巨大潜力。脉冲神经网络是类脑人工智能的核心部分,它通过模拟生物神经网络的结构和信息传输方式来实现类脑计算。本文首先总结了五种模型的优缺点,并分析了几种网络拓扑结构的特点。然后,总结了脉冲神经网络算法。分析了基于脉冲时间依赖可塑性(STDP)规则的无监督学习和四种类型的监督学习算法。最后,综述了国内外类脑神经形态芯片的研究情况。本文旨在为脉冲神经网络领域的新同行提供学习思路和研究方向。

相似文献

1
[A review of brain-like spiking neural network and its neuromorphic chip research].[类脑脉冲神经网络及其神经形态芯片研究综述]
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Oct 25;38(5):986-994. doi: 10.7507/1001-5515.202011005.
5
[Review of the research of spiking neuron network based on memristor].[基于忆阻器的脉冲神经网络研究综述]
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Jun 25;35(3):475-480. doi: 10.7507/1001-5515.201703091.
7
Adaptive STDP-based on-chip spike pattern detection.基于自适应尖峰时间依赖可塑性的片上尖峰模式检测。
Front Neurosci. 2023 Jul 13;17:1203956. doi: 10.3389/fnins.2023.1203956. eCollection 2023.
8
Towards spike-based machine intelligence with neuromorphic computing.迈向基于尖峰的机器智能的神经形态计算。
Nature. 2019 Nov;575(7784):607-617. doi: 10.1038/s41586-019-1677-2. Epub 2019 Nov 27.
9

本文引用的文献

2
On the accuracy and computational cost of spiking neuron implementation.关于尖峰神经元实现的准确性和计算成本。
Neural Netw. 2020 Feb;122:196-217. doi: 10.1016/j.neunet.2019.09.026. Epub 2019 Oct 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验