State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun 130012 , P.R. China.
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors , Chinese Academy of Sciences , Beijing 100083 , P.R. China.
ACS Nano. 2019 Aug 27;13(8):9139-9147. doi: 10.1021/acsnano.9b03454. Epub 2019 Jul 29.
Achieving high deformability in response to minimal external stimulation while maximizing human-machine interactions is a considerable challenge for wearable and flexible electronics applications. Various natural materials or living organisms consisting of hierarchical or interlocked structures exhibit combinations of properties (, natural elasticity and flexibility) that do not occur in conventional materials. The interlocked epidermal-dermal microbridges in human skin have excellent elastic moduli, which enhance and amplify received tactile signal transport. Herein, we use the sensing mechanisms inspired by human skin to develop TiC/natural microcapsule biocomposite films that are robust and deformable by mimicking the micro/nanoscale structure of human skin-such as the hierarchy, interlocking, and patterning. The interlocked hierarchical structures can be used to create biocomposite films with excellent elastic moduli (0.73 MPa), capable of high deformability in response to various external stimuli, as verified by employing theoretical studies. The flexible sensor with a hierarchical and interlocked structure (24.63 kPa) achieves a 9.4-fold increase in pressure sensitivity compared to that of the planar structured TiC-based flexible sensor (2.61 kPa). This device also exhibits a rapid response rate (14 ms) and good cycling reproducibility and stability (5000 times). In addition, the flexible pressure device can be used to detect and discriminate signals ranging from finger motion and human pulses to voice recognition.
在可穿戴和柔性电子产品应用中,对外界刺激做出高变形响应,同时最大限度地提高人机交互,这是一个相当大的挑战。各种由分层或连锁结构组成的天然材料或生物体表现出(、天然弹性和柔韧性)的特性组合,这些特性在传统材料中不会出现。人类皮肤中的表皮-真皮微桥具有优异的弹性模量,可增强和放大所接收的触觉信号传输。在此,我们利用受人类皮肤启发的传感机制,开发出 TiC/天然微胶囊生物复合材料薄膜,通过模仿人类皮肤的微/纳米级结构(如层次结构、连锁结构和图案结构)来实现其坚固性和可变形性。连锁的层次结构可用于创建具有优异弹性模量(0.73 MPa)的生物复合材料薄膜,可实现对各种外部刺激的高变形响应,这已通过理论研究得到验证。具有层次结构和连锁结构的柔性传感器(24.63 kPa)的压力灵敏度比基于 TiC 的平面结构柔性传感器(2.61 kPa)提高了 9.4 倍。该器件还具有快速响应速度(14 ms)、良好的循环重现性和稳定性(5000 次)。此外,该柔性压力装置可用于检测和区分从手指运动、人体脉搏到语音识别等信号。