Center for Nanoscale Characterization and Devices (CNCD), Wuhan National Laboratory for Optoelectronics (WNLO) and School of Physics , Huazhong University of Science and Technology (HUST) , Luoyu Road 1037 , Wuhan 430074 , P.R. China.
School of Science , Hubei University of Automotive Technology , Shiyan 442002 , P.R. China.
ACS Nano. 2020 Feb 25;14(2):2145-2155. doi: 10.1021/acsnano.9b08952. Epub 2020 Feb 12.
Recently, wearable and flexible pressure sensors have sparked tremendous research interest, and considerable applications including human activity monitoring, biomedical research, and artificial intelligence interaction are reported. However, the large-scale preparation of low-cost, high-sensitivity piezoresistive sensors still face huge challenges. Inspired by the specific structures and excellent metal conductivity of a family of two-dimensional (2D) transition-metal carbides and nitrides (MXene) and the high-performance sensing effect of human skin including randomly distributed microstructural receptors, we fabricate a highly sensitive MXene-based piezoresistive sensor with bioinspired microspinous microstructures formed by a simple abrasive paper stencil printing process. The obtained piezoresistive sensor shows high sensitivity (151.4 kPa), relatively short response time (<130 ms), subtle pressure detection limit of 4.4 Pa, and excellent cycle stability over 10,000 cycles. The mechanism of the high sensitivity of the sensor is dynamically revealed from the structural perspective by means of electron microscopy experiment and finite element simulation. Bioinspired microspinous microstructures can effectively improve the sensitivity of the pressure sensor and the limit of the detectable subtle pressure. In practice, the sensor shows great performance in monitoring human physiological signals, detecting quantitatively pressure distributions, and remote monitoring of intelligent robot motion in real time.
最近,可穿戴和柔性压力传感器引起了极大的研究兴趣,并且已经报道了相当多的应用,包括人体活动监测、生物医学研究和人工智能交互。然而,大规模制备低成本、高灵敏度压阻传感器仍然面临巨大挑战。受二维(2D)过渡金属碳化物和氮化物(MXene)家族的特殊结构和优异的金属导电性以及人类皮肤的高性能传感效应(包括随机分布的微观结构受体)的启发,我们通过简单的砂纸模板印刷工艺制备了一种具有生物启发的微刺微观结构的高灵敏度基于 MXene 的压阻传感器。所获得的压阻传感器具有高灵敏度(151.4 kPa)、较短的响应时间(<130 ms)、微妙的压力检测极限为 4.4 Pa 和超过 10000 次循环的出色循环稳定性。通过电子显微镜实验和有限元模拟从结构角度动态揭示了传感器高灵敏度的机制。生物启发的微刺微观结构可以有效地提高压力传感器的灵敏度和可检测微妙压力的极限。在实际应用中,该传感器在监测人体生理信号、定量检测压力分布以及实时远程监测智能机器人运动方面表现出优异的性能。