Suppr超能文献

TAF-ChIP:一种用于全基因组染色质免疫沉淀分析的超低输入方法。

TAF-ChIP: an ultra-low input approach for genome-wide chromatin immunoprecipitation assay.

机构信息

Institute of Developmental Biology and Neurobiology, University of Mainz, Mainz, Germany

Department of Pharmacology, University Medical Center, Johannes Gutenberg University of Mainz, Mainz, Germany.

出版信息

Life Sci Alliance. 2019 Jul 22;2(4). doi: 10.26508/lsa.201900318. Print 2019 Aug.

Abstract

Chromatin immunoprecipitation (ChIP) followed by next generation sequencing (ChIP-Seq) is a powerful technique to study transcriptional regulation. However, the requirement of millions of cells to generate results with high signal-to-noise ratio precludes it in the study of small cell populations. Here, we present a tagmentation-assisted fragmentation ChIP (TAF-ChIP) and sequencing method to generate high-quality histone profiles from low cell numbers. The data obtained from the TAF-ChIP approach are amenable to standard tools for ChIP-Seq analysis, owing to its high signal-to-noise ratio. The epigenetic profiles from TAF-ChIP approach showed high agreement with conventional ChIP-Seq datasets, thereby underlining the utility of this approach.

摘要

染色质免疫沉淀(ChIP)结合下一代测序(ChIP-Seq)是研究转录调控的一种强大技术。然而,为了获得高信噪比的结果,需要数百万个细胞,这使得该技术无法用于研究小细胞群体。在这里,我们提出了一种标签酶辅助片段化 ChIP(TAF-ChIP)和测序方法,可从小细胞数量中生成高质量的组蛋白图谱。由于高信噪比,从 TAF-ChIP 方法获得的数据适用于 ChIP-Seq 分析的标准工具。TAF-ChIP 方法的表观遗传图谱与传统的 ChIP-Seq 数据集高度一致,从而强调了该方法的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0823/6653780/24734e9b4c8c/LSA-2019-00318_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验