Suppr超能文献

一组分子标志物可预测结直肠腹膜转移患者细胞减灭术和腹腔热灌注化疗后对丝裂霉素 C 的化疗敏感性。

A set of molecular markers predicts chemosensitivity to Mitomycin-C following cytoreductive surgery and hyperthermic intraperitoneal chemotherapy for colorectal peritoneal metastasis.

机构信息

Division of Surgical Oncology, National Cancer Centre Singapore, Singapore, Singapore.

Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Singapore.

出版信息

Sci Rep. 2019 Jul 22;9(1):10572. doi: 10.1038/s41598-019-46819-z.

Abstract

Cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC) is associated with significant perioperative morbidity and mortality. We aim to generate and validate a biomarker set predicting sensitivity to Mitomycin-C to refine selection of patients with colorectal peritoneal metastasis (CPM) for this treatment. A signature predicting Mitomycin-C sensitivity was generated using data from Genomics of Drug Sensitivity in Cancer and The Cancer Genome Atlas. Validation was performed on CPM patients who underwent CRS-HIPEC (n = 62) using immunohistochemistry (IHC). We determined predictive significance of our set using overall survival as a surrogate endpoint via a logistic regression model. Three potential biomarkers were identified and optimized for IHC. Patients exhibiting lower expression of PAXIP1 and SSBP2 had poorer survival than those with higher expression (p = 0.045 and 0.140, respectively). No difference was observed in patients with differing DTYMK expression (p = 0.715). Combining PAXIP1 and SSBP2 in a set, patients with two dysregulated protein markers had significantly poorer survival than one or no dysregulated marker (p = 0.016). This set independently predicted survival in a Cox regression model (HR 5.097; 95% CI 1.731-15.007; p = 0.003). We generated and validated an IHC prognostic set which could potentially identify patients who are likely to benefit from HIPEC using Mitomycin-C.

摘要

细胞减灭术 (CRS) 和腹腔热灌注化疗 (HIPEC) 与显著的围手术期发病率和死亡率相关。我们旨在生成和验证一组预测丝裂霉素 C 敏感性的生物标志物,以细化对接受结直肠腹膜转移 (CPM) 治疗的患者的选择。使用癌症药物敏感性基因组学和癌症基因组图谱中的数据生成预测丝裂霉素 C 敏感性的特征。使用免疫组织化学 (IHC) 在接受 CRS-HIPEC (n = 62) 的 CPM 患者中进行验证。我们通过逻辑回归模型使用总生存期作为替代终点来确定我们的生物标志物集的预测意义。确定了三个潜在的生物标志物,并针对 IHC 进行了优化。与高表达相比,PAXIP1 和 SSBP2 表达较低的患者生存更差 (p = 0.045 和 0.140)。DTYMK 表达不同的患者之间没有观察到差异 (p = 0.715)。在一组中结合 PAXIP1 和 SSBP2,具有两个失调蛋白标志物的患者的生存明显比一个或没有失调标志物的患者差 (p = 0.016)。该生物标志物集在 Cox 回归模型中独立预测了生存 (HR 5.097; 95%CI 1.731-15.007; p = 0.003)。我们生成并验证了一种 IHC 预后生物标志物集,该生物标志物集可能使用丝裂霉素 C 识别出可能从 HIPEC 中受益的患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验