Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.
ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK.
Nat Plants. 2019 Aug;5(8):879-889. doi: 10.1038/s41477-019-0475-z. Epub 2019 Jul 22.
Prochlorococcus is a major contributor to primary production, and globally the most abundant photosynthetic genus of picocyanobacteria because it can adapt to highly stratified low-nutrient conditions that are characteristic of the surface ocean. Here, we examine the structural adaptations of the photosynthetic thylakoid membrane that enable different Prochlorococcus ecotypes to occupy high-light, low-light and nutrient-poor ecological niches. We used atomic force microscopy to image the different photosystem I (PSI) membrane architectures of the MED4 (high-light) Prochlorococcus ecotype grown under high-light and low-light conditions in addition to the MIT9313 (low-light) and SS120 (low-light) Prochlorococcus ecotypes grown under low-light conditions. Mass spectrometry quantified the relative abundance of PSI, photosystem II (PSII) and cytochrome bf complexes and the various Pcb proteins in the thylakoid membrane. Atomic force microscopy topographs and structural modelling revealed a series of specialized PSI configurations, each adapted to the environmental niche occupied by a particular ecotype. MED4 PSI domains were loosely packed in the thylakoid membrane, whereas PSI in the low-light MIT9313 is organized into a tightly packed pseudo-hexagonal lattice that maximizes harvesting and trapping of light. There are approximately equal levels of PSI and PSII in MED4 and MIT9313, but nearly twofold more PSII than PSI in SS120, which also has a lower content of cytochrome bf complexes. SS120 has a different tactic to cope with low-light levels, and SS120 thylakoids contained hundreds of closely packed Pcb-PSI supercomplexes that economize on the extra iron and nitrogen required to assemble PSI-only domains. Thus, the abundance and widespread distribution of Prochlorococcus reflect the strategies that various ecotypes employ for adapting to limitations in light and nutrient levels.
聚球藻是初级生产力的主要贡献者,也是全球最丰富的光合蓝藻属,因为它可以适应高度分层、低营养的条件,而这些条件是海洋表面的特征。在这里,我们研究了光合作用类囊体膜的结构适应性,使不同的聚球藻生态型能够占据高光、低光和贫营养生态位。我们使用原子力显微镜来成像不同的光合系统 I(PSI)膜结构,这些结构来自在高光和低光条件下生长的 MED4(高光)聚球藻生态型,以及在低光条件下生长的 MIT9313(低光)和 SS120(低光)聚球藻生态型。质谱定量了类囊体膜中 PSI、光合系统 II(PSII)和细胞色素 bf 复合物以及各种 Pcb 蛋白的相对丰度。原子力显微镜形貌和结构建模揭示了一系列专门的 PSI 结构,每种结构都适应于特定生态型所占据的环境小生境。MED4 PSI 结构域在类囊体膜中松散排列,而在低光条件下生长的 MIT9313 中的 PSI 则组织成紧密堆积的拟六方晶格,最大限度地提高了光的捕获和捕获。MED4 和 MIT9313 中的 PSI 和 PSII 水平大致相等,但 SS120 中的 PSII 几乎是 PSI 的两倍,而且 SS120 中的细胞色素 bf 复合物含量也较低。SS120 有不同的策略来应对低光水平,SS120 的类囊体含有数百个紧密堆积的 Pcb-PSI 超复合物,这些复合物节省了组装仅 PSI 结构域所需的额外铁和氮。因此,聚球藻的丰富度和广泛分布反映了各种生态型适应光和营养水平限制的策略。