Suppr超能文献

推进多标记代谢组条形码数据在营养专家饮食分析中的整合。

Advancing the integration of multi-marker metabarcoding data in dietary analysis of trophic generalists.

机构信息

CIBIO-InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal.

CEF, Center for Functional Ecology - Science for People & the Planet, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.

出版信息

Mol Ecol Resour. 2019 Nov;19(6):1420-1432. doi: 10.1111/1755-0998.13060. Epub 2019 Aug 26.

Abstract

The application of DNA metabarcoding to dietary analysis of trophic generalists requires using multiple markers in order to overcome problems of primer specificity and bias. However, limited attention has been given to the integration of information from multiple markers, particularly when they partly overlap in the taxa amplified, and vary in taxonomic resolution and biases. Here, we test the use of a mix of universal and specific markers, provide criteria to integrate multi-marker metabarcoding data and a python script to implement such criteria and produce a single list of taxa ingested per sample. We then compare the results of dietary analysis based on morphological methods, single markers, and the proposed combination of multiple markers. The study was based on the analysis of 115 faeces from a small passerine, the Black Wheatears (Oenanthe leucura). Morphological analysis detected far fewer plant taxa (12) than either a universal 18S marker (57) or the plant trnL marker (124). This may partly reflect the detection of secondary ingestion by molecular methods. Morphological identification also detected far fewer taxa (23) than when using 18S (91) or the arthropod markers IN16STK (244) and ZBJ (231), though each method missed or underestimated some prey items. Integration of multi-marker data provided far more detailed dietary information than any single marker and estimated higher frequencies of occurrence of all taxa. Overall, our results show the value of integrating data from multiple, taxonomically overlapping markers in an example dietary data set.

摘要

DNA 代谢组学在营养类群的饮食分析中的应用需要使用多个标记物,以克服引物特异性和偏倚的问题。然而,对于整合来自多个标记物的信息,特别是当它们在扩增的分类单元中部分重叠,并且在分类分辨率和偏差方面存在差异时,关注较少。在这里,我们测试了使用通用和特定标记物的混合物的用途,提供了整合多标记物代谢组学数据的标准,并提供了一个 Python 脚本,以实现这些标准并为每个样本产生一个单一的摄入分类单元列表。然后,我们比较了基于形态学方法、单一标记物和所提出的多标记物组合的饮食分析结果。该研究基于对 115 个黑喉石䳭(Oenanthe leucura)粪便的分析。形态学分析检测到的植物类群(12 个)远少于通用 18S 标记物(57 个)或植物 trnL 标记物(124 个)。这可能部分反映了分子方法检测到的二次摄取。形态学鉴定也检测到的类群(23 个)远少于使用 18S(91 个)或节肢动物标记物 IN16STK(244 个)和 ZBJ(231 个),尽管每种方法都遗漏或低估了一些猎物。多标记物数据的整合提供了比任何单一标记物更详细的饮食信息,并估计了所有类群的更高出现频率。总的来说,我们的结果表明,在饮食数据集示例中整合来自多个分类上重叠的标记物的数据具有价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca58/6899665/d73824ea9d81/MEN-19-1420-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验