Suppr超能文献

AraPPINet:用于分析……中激素信号串扰的更新互作组

AraPPINet: An Updated Interactome for the Analysis of Hormone Signaling Crosstalk in .

作者信息

Zhao Jiawei, Lei Yu, Hong Jianwei, Zheng Cunjian, Zhang Lida

机构信息

Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Front Plant Sci. 2019 Jul 5;10:870. doi: 10.3389/fpls.2019.00870. eCollection 2019.

Abstract

Protein-protein interactions (PPIs) play fundamental roles in various cellular processes. Here, we present a new version of computational interactome that contains more than 345,000 predicted PPIs involving about 51.2% of the Arabidopsis proteins. Compared to the earlier version, the updated AraPPINet displays a higher accuracy in predicting protein interactions through performance evaluation with independent datasets. In addition to the experimental verifications of the previous version, the new version has been subjected to further validation test that demonstrates its ability to discover novel PPIs involved in hormone signaling pathways. Moreover, network analysis shows that many overlapping proteins are significantly involved in the interactions which mediated the crosstalk among plant hormones. The new version of AraPPINet provides a more reliable interactome which would facilitate the understanding of crosstalk among hormone signaling pathways in plants.

摘要

蛋白质-蛋白质相互作用(PPIs)在各种细胞过程中发挥着基本作用。在此,我们展示了一个新版本的计算相互作用组,其中包含超过345,000个预测的PPIs,涉及约51.2%的拟南芥蛋白质。与早期版本相比,更新后的AraPPINet通过独立数据集的性能评估,在预测蛋白质相互作用方面显示出更高的准确性。除了对先前版本进行实验验证外,新版本还经过了进一步的验证测试,证明了其发现参与激素信号通路的新型PPIs的能力。此外,网络分析表明,许多重叠蛋白显著参与了介导植物激素间相互作用的过程。新版本的AraPPINet提供了一个更可靠的相互作用组,这将有助于理解植物激素信号通路之间的相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验