Suppr超能文献

中间丝网络中刚性和非弹性流态化。

Stiffening and inelastic fluidization in vimentin intermediate filament networks.

机构信息

Living Matter Department, AMOLF, 1098 XG Amsterdam, The Netherlands.

出版信息

Soft Matter. 2019 Sep 18;15(36):7127-7136. doi: 10.1039/c9sm00590k.

Abstract

Intermediate filaments are cytoskeletal proteins that are key regulators of cell mechanics, a role which is intrinsically tied to their hierarchical structure and their unique ability to accommodate large axial strains. However, how the single-filament response to applied strains translates to networks remains unclear, particularly with regards to the crosslinking role played by the filaments' disordered "tail" domains. Here we test the role of these noncovalent crosslinks in the nonlinear rheology of reconstituted networks of the intermediate filament protein vimentin, probing their stress- and rate-dependent mechanics. Similarly to previous studies we observe elastic stress-stiffening but unlike previous work we identify a characteristic yield stress σ*, above which the networks exhibit rate-dependent softening of the network, referred to as inelastic fluidization. By investigating networks formed from tail-truncated vimentin, in which noncovalent crosslinking is suppressed, and glutaraldehyde-treated vimentin, in which crosslinking is made permanent, we show that rate-dependent inelastic fluidization is a direct consequence of vimentin's transient crosslinking. Surprisingly, although the tail-tail crosslinks are individually weak, the effective timescale for stress relaxation of the network exceeds 1000 s at σ*. Vimentin networks can therefore maintain their integrity over a large range of strains (up to ∼1000%) and loading rates (10-3 to 10-1 s-1). Our results provide insight into how the hierarchical structure of vimentin networks contributes to the cell's ability to be deformable yet strong.

摘要

中间丝是细胞骨架蛋白,是细胞力学的关键调节因子,这种作用与其层次结构及其容纳大轴向应变的独特能力密切相关。然而,单丝对施加应变的响应如何转化为网络仍然不清楚,特别是对于纤维无序“尾部”域所起的交联作用。在这里,我们测试了这些非共价交联在中间丝蛋白波形蛋白重组网络的非线性流变学中的作用,研究了它们的应力和速率依赖性力学。与之前的研究类似,我们观察到弹性应力硬化,但与之前的工作不同,我们确定了一个特征屈服应力σ*,超过该值后,网络表现出网络的速率依赖性软化,称为非弹性流化。通过研究尾部截断的波形蛋白形成的网络,其中抑制了非共价交联,以及戊二醛处理的波形蛋白,其中交联是永久性的,我们表明,速率依赖性的非弹性流化是波形蛋白瞬态交联的直接结果。令人惊讶的是,尽管尾部-尾部交联单独较弱,但网络的应力松弛有效时间尺度在σ*超过 1000 s。因此,波形蛋白网络可以在大应变范围(高达约 1000%)和加载速率(10-3 到 10-1 s-1)下保持其完整性。我们的结果提供了有关波形蛋白网络的层次结构如何有助于细胞的可变形和强度的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验