Institute for X-Ray Physics, University of Göttingen, 37077 Göttingen, Germany.
Max Planck School "Matter to Life," University of Göttingen, 37077 Göttingen, Germany.
Proc Natl Acad Sci U S A. 2021 Jul 6;118(27). doi: 10.1073/pnas.2102026118.
The cytoskeleton, an intricate network of protein filaments, motor proteins, and cross-linkers, largely determines the mechanical properties of cells. Among the three filamentous components, F-actin, microtubules, and intermediate filaments (IFs), the IF network is by far the most extensible and resilient to stress. We present a multiscale approach to disentangle the three main contributions to vimentin IF network mechanics-single-filament mechanics, filament length, and interactions between filaments-including their temporal evolution. Combining particle tracking, quadruple optical trapping, and computational modeling, we derive quantitative information on the strength and kinetics of filament interactions. Specifically, we find that hydrophobic contributions to network mechanics enter mostly via filament-elongation kinetics, whereas electrostatics have a direct influence on filament-filament interactions.
细胞骨架是一个由蛋白质丝、马达蛋白和交联蛋白组成的复杂网络,在很大程度上决定了细胞的力学特性。在这三种丝状成分中,中间丝(IFs)网络是迄今为止最具伸展性和抗压能力的。我们提出了一种多尺度方法来分解影响角蛋白 IF 网络力学的三个主要因素——单丝力学、丝长和丝间相互作用,包括它们的时间演变。我们结合粒子追踪、四重光阱和计算建模,得出了关于丝相互作用强度和动力学的定量信息。具体来说,我们发现网络力学中的疏水贡献主要通过丝的伸长动力学进入,而静电则直接影响丝-丝相互作用。