Suppr超能文献

拉伸单根胶原纤维可揭示非线性力学行为。

Stretching Single Collagen Fibrils Reveals Nonlinear Mechanical Behavior.

作者信息

Gachon Emilie, Mesquida Patrick

机构信息

Department of Physics, King's College London, Strand, London, United Kingdom.

Department of Physics, King's College London, Strand, London, United Kingdom.

出版信息

Biophys J. 2020 Mar 24;118(6):1401-1408. doi: 10.1016/j.bpj.2020.01.038. Epub 2020 Feb 4.

Abstract

The mechanical properties of collagen fibrils play an important role in cell-matrix interactions and are a manifestation of their molecular structure. Using a, to our knowledge, novel combination of uniaxial, longitudinal straining and radial nanoindentation, we found that type I collagen fibrils show a pronounced nonlinear behavior in the form of strain stiffening at strains from 0 to 15%, followed by strain softening at strains from 15 to 25%. At the molecular scale, this surprising phenomenon can be explained by the combination of unfolding of disordered domains and breaking of native cross-links at different stages of strain. Fibrils cross-linked artificially by glutaraldehyde do not show such a behavior, and nanoindentation allowed us to measure the mechanics of the overlap and gap regions in the D-banding individually. The results could have consequences for our understanding of matrix mechanics and the influence of excessive glycation, which has been linked with age-related diseases such as diabetes. Furthermore, the simplicity of the straining method could be attractive in other areas of biophysics at the nanometer scale because it does not require any bespoke instrumentation and is easy to use.

摘要

胶原纤维的力学性能在细胞与基质的相互作用中起着重要作用,并且是其分子结构的一种体现。据我们所知,通过将单轴纵向拉伸与径向纳米压痕进行新颖的组合,我们发现I型胶原纤维在应变从0%到15%时呈现出明显的非线性行为,表现为应变硬化,随后在应变从15%到25%时出现应变软化。在分子尺度上,这种惊人的现象可以通过无序结构域的展开与应变不同阶段天然交联的断裂相结合来解释。经戊二醛人工交联的纤维不表现出这种行为,并且纳米压痕使我们能够分别测量D带中重叠区域和间隙区域的力学性能。这些结果可能会影响我们对基质力学以及过度糖基化影响的理解,过度糖基化与糖尿病等与年龄相关的疾病有关。此外,这种拉伸方法的简单性在纳米尺度的其他生物物理领域可能具有吸引力,因为它不需要任何定制仪器且易于使用。

相似文献

1
Stretching Single Collagen Fibrils Reveals Nonlinear Mechanical Behavior.拉伸单根胶原纤维可揭示非线性力学行为。
Biophys J. 2020 Mar 24;118(6):1401-1408. doi: 10.1016/j.bpj.2020.01.038. Epub 2020 Feb 4.
5
Mechanical Strain Alters the Surface Charge of Collagen Fibrils.机械应变改变胶原原纤维的表面电荷。
ACS Nano. 2021 Jun 22;15(6):9820-9826. doi: 10.1021/acsnano.1c00682. Epub 2021 May 23.
6
Stress-strain experiments on individual collagen fibrils.对单个胶原纤维进行的应力-应变实验。
Biophys J. 2008 Oct;95(8):3956-63. doi: 10.1529/biophysj.107.124602. Epub 2008 Jul 18.
8
Collagen Fibrils: Nature's Highly Tunable Nonlinear Springs.胶原纤维:大自然高度可调的非线性弹簧。
ACS Nano. 2018 Apr 24;12(4):3671-3680. doi: 10.1021/acsnano.8b00837. Epub 2018 Mar 21.
10
Structural investigations on native collagen type I fibrils using AFM.使用原子力显微镜对天然I型胶原纤维进行结构研究。
Biochem Biophys Res Commun. 2007 Mar 2;354(1):27-32. doi: 10.1016/j.bbrc.2006.12.114. Epub 2006 Dec 22.

本文引用的文献

3
Tension tests on mammalian collagen fibrils.哺乳动物胶原纤维的拉伸试验。
Interface Focus. 2016 Feb 6;6(1):20150080. doi: 10.1098/rsfs.2015.0080.
4
Measurement of Elastic Modulus of Collagen Type I Single Fiber.I型胶原蛋白单纤维弹性模量的测量
PLoS One. 2016 Jan 22;11(1):e0145711. doi: 10.1371/journal.pone.0145711. eCollection 2016.
8
Dynamic mechanical analysis of collagen fibrils at the nanoscale.纳米尺度下胶原原纤维的动态力学分析。
J Mech Behav Biomed Mater. 2012 Jan;5(1):165-70. doi: 10.1016/j.jmbbm.2011.08.020. Epub 2011 Sep 5.
9
Viscoelastic properties of isolated collagen fibrils.胶原纤维的黏弹性。
Biophys J. 2011 Jun 22;100(12):3008-15. doi: 10.1016/j.bpj.2011.04.052.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验