Das Subhabrata, Wu Congcong, Song Zhaoning, Hou Yuchen, Koch Rainer, Somasundaran Ponisseril, Priya Shashank, Barbiellini Bernardo, Venkatesan Renugopalakrishnan
Langmuir Center of Colloids and Interfaces , Columbia University in the City of New York , New York 10027 , New York , United States.
Materials Research Institute, Pennsylvania State University , University Park 16802 , Pennsylvania , United States.
ACS Appl Mater Interfaces. 2019 Aug 28;11(34):30728-30734. doi: 10.1021/acsami.9b06372. Epub 2019 Aug 15.
Recently, halide perovskites have upstaged decades of solar cell development by reaching power conversion efficiencies that surpass the performance of polycrystalline silicon. The efficiency improvement in the perovskite cells is related to repeated recycling between photons and electron-hole pairs, reduced recombination losses, and increased carrier lifetimes. Here, we demonstrate a novel approach toward augmenting the perovskite solar cell efficiency by invoking the Förster Resonance Energy Transfer (FRET) mechanism. FRET occurs in the near-field region as the bacteriorhodopsin (bR) protein, and perovskite has similar optical gaps. Titanium dioxide functionalized with the bR protein is shown to accelerate the electron injection from excitons produced in the perovskite layer. FRET predicts the strength of long-range excitonic transport between the perovskite and bR layers. Solar cells incorporating TiO/bR layers are found to exhibit much higher photovoltaic performance as compared to baseline cells without bR. These results open the opportunity to develop a new class of bioperovskite solar cells with improved performance and stability.
最近,卤化物钙钛矿通过达到超过多晶硅性能的功率转换效率,在数十年的太阳能电池发展中崭露头角。钙钛矿电池的效率提高与光子和电子 - 空穴对之间的反复循环、减少的复合损失以及增加的载流子寿命有关。在此,我们展示了一种通过引入福斯特共振能量转移(FRET)机制来提高钙钛矿太阳能电池效率的新方法。由于细菌视紫红质(bR)蛋白与钙钛矿具有相似的光学带隙,FRET在近场区域发生。用bR蛋白功能化的二氧化钛被证明能加速钙钛矿层中产生的激子的电子注入。FRET预测了钙钛矿层和bR层之间长程激子传输的强度。与没有bR的基线电池相比,包含TiO/bR层的太阳能电池表现出更高的光伏性能。这些结果为开发一类性能和稳定性得到改善的新型生物钙钛矿太阳能电池提供了机会。