Suppr超能文献

基于挠曲的3D打印机器人微镊子的驱动机制

The Actuation Mechanism of 3D Printed Flexure-Based Robotic Microtweezers.

作者信息

Almeida Alexander, Andrews George, Jaiswal Devina, Hoshino Kazunori

机构信息

Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.

Department of Biomedical Engineering, Western New England University, Springfield, MA 01119, USA.

出版信息

Micromachines (Basel). 2019 Jul 14;10(7):470. doi: 10.3390/mi10070470.

Abstract

We report on the design and the modeling of a three-dimensional (3D) printed flexure-based actuation mechanism for robotic microtweezers, the main body of which is a single piece of nylon. Our design aims to fill a void in sample manipulation between two classes of widely used instruments: nano-scale and macro-scale robotic manipulators. The key component is a uniquely designed cam flexure system, which linearly translates the bending of a piezoelectric bimorph actuator into angular displacement. The 3D printing made it possible to realize the fabrication of the cam with a specifically calculated curve, which would otherwise be costly using conventional milling techniques. We first characterized 3D printed nylon by studying sets of simple cantilevers, which provided fundamental characteristics that could be used for further designs. The finite element method analysis based on the obtained material data matched well with the experimental data. The tweezers showed angular displacement from 0° to 10° linearly to the deflection of the piezo actuator (0-1.74 mm) with the linearity error of 0.1°. Resonant frequency of the system with/without working tweezer tips was discovered as 101 Hz and 127 Hz, respectively. Our design provides simple and low-cost construction of a versatile manipulator system for samples in the micro/meso-scale (0.1-1 mm).

摘要

我们报告了一种用于机器人微镊子的基于挠曲的三维(3D)打印驱动机构的设计与建模,其主体为单件尼龙。我们的设计旨在填补两类广泛使用的仪器在样品操作方面的空白:纳米级和宏观级机器人操纵器。关键部件是一个独特设计的凸轮挠曲系统,它将压电双压电晶片致动器的弯曲线性转换为角位移。3D打印使得能够制造出具有特定计算曲线的凸轮,否则使用传统铣削技术成本会很高。我们首先通过研究多组简单悬臂梁对3D打印尼龙进行了表征,这些悬臂梁提供了可用于进一步设计的基本特性。基于所获得材料数据的有限元方法分析与实验数据匹配良好。镊子的角位移在0°至10°之间与压电致动器的挠度(0 - 1.74毫米)呈线性关系,线性误差为0.1°。发现带有/不带有工作镊子尖端的系统共振频率分别为101赫兹和127赫兹。我们的设计为微/中尺度(〇.1 - 1毫米)样品的通用操纵器系统提供了简单且低成本的构造。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d64/6681016/f6af182946ef/micromachines-10-00470-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验