Suppr超能文献

采用拓扑优化设计的具有柔顺机构的3D打印微型镊子。

3D-Printed Micro-Tweezers with a Compliant Mechanism Designed Using Topology Optimization.

作者信息

Moritoki Yukihito, Furukawa Taichi, Sun Jinyi, Yokoyama Minoru, Shimono Tomoyuki, Yamada Takayuki, Nishiwaki Shinji, Kageyama Tatsuto, Fukuda Junji, Mukai Masaru, Maruo Shoji

机构信息

Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.

Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.

出版信息

Micromachines (Basel). 2021 May 19;12(5):579. doi: 10.3390/mi12050579.

Abstract

The development of handling technology for microscopic biological samples such as cells and spheroids has been required for the advancement of regenerative medicine and tissue engineering. In this study, we developed micro-tweezers with a compliant mechanism to manipulate organoids. The proposed method combines high-resolution microstereolithography that uses a blue laser and topology optimization for shape optimization of micro-tweezers. An actuation system was constructed using a linear motor stage with a force control system to operate the micro-tweezers. The deformation of the topology-optimized micro-tweezers was examined analytically and experimentally. The results verified that the displacement of the tweezer tip was proportional to the applied load; furthermore, the displacement was sufficient to grasp biological samples with an approximate diameter of several hundred micrometers. We experimentally demonstrated the manipulation of an organoid with a diameter of approximately 360 µm using the proposed micro-tweezers. Thus, combining microstereolithography and topology optimization to fabricate micro-tweezers can be potentially used in modifying tools capable of handling various biological samples.

摘要

再生医学和组织工程的发展需要细胞和球体等微观生物样本处理技术的进步。在本研究中,我们开发了一种具有柔顺机构的微镊子来操纵类器官。所提出的方法结合了使用蓝光激光的高分辨率微立体光刻技术和用于微镊子形状优化的拓扑优化技术。使用带有力控制系统的直线电机平台构建了一个驱动系统来操作微镊子。对拓扑优化后的微镊子的变形进行了分析和实验研究。结果证实镊子尖端的位移与施加的载荷成正比;此外,该位移足以抓取直径约几百微米的生物样本。我们通过实验证明了使用所提出的微镊子可以操纵直径约为360 µm的类器官。因此,将微立体光刻技术和拓扑优化技术相结合来制造微镊子,有可能用于制造能够处理各种生物样本的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/721d/8161394/2336b760f476/micromachines-12-00579-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验