Suppr超能文献

通过I型甲烷营养菌操纵子中的密码子变体同时优化转录和翻译的基因组证据。

Genomic Evidence for Simultaneous Optimization of Transcription and Translation through Codon Variants in the Operon of Type Ia Methanotrophs.

作者信息

Villada Juan C, Duran Maria F, Lee Patrick K H

机构信息

School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China.

School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong SAR, China

出版信息

mSystems. 2019 Jul 23;4(4):e00342-19. doi: 10.1128/mSystems.00342-19.

Abstract

Understanding the interplay between genotype and phenotype is a fundamental goal of functional genomics. Methane oxidation is a microbial phenotype with global-scale significance as part of the carbon biogeochemical cycle and a sink for greenhouse gas. Microorganisms that oxidize methane (methanotrophs) are taxonomically diverse and widespread around the globe. In methanotrophic bacteria, enzymes in the methane oxidation metabolic module (KEGG module M00174, conversion of methane to formaldehyde) are encoded in four operons (, , , and ). Recent reports have suggested that methanotrophs in acquired methane monooxygenases through horizontal gene transfer. Here, we used a genomic meta-analysis to infer the transcriptional and translational advantages of coding sequences from the methane oxidation metabolic modules of different types of methanotrophs. By analyzing isolate and metagenome-assembled genomes from phylogenetically and geographically diverse sources, we detected an anomalous nucleotide composition bias in the coding sequences of particulate methane monooxygenase genes () from type Ia methanotrophs. We found that this nucleotide bias increases the level of codon bias by decreasing the GC content in the third base of codons, a strategy that contrasts with that of other coding sequences in the module. Further codon usage analyses uncovered that codon variants of the type Ia coding sequences deviate from the genomic signature to match ribosomal protein-coding sequences. Subsequently, computation of transcription and translation metrics revealed that the coding sequences of type Ia methanotrophs optimize the usage of codon variants to maximize translation efficiency and accuracy, while minimizing the synthesis cost of transcripts and proteins. Microbial methane oxidation plays a fundamental role in the biogeochemical cycle of Earth's system. Recent reports have provided evidence for the acquisition of methane monooxygenases by horizontal gene transfer in methane-oxidizing bacteria from different environments, but how evolution has shaped the coding sequences to execute methanotrophy efficiently remains unexplored. In this work, we provide genomic evidence that among the different types of methanotrophs, type Ia methanotrophs possess a unique coding sequence of the operon that is under positive selection for optimal resource allocation and efficient synthesis of transcripts and proteins. This adaptive trait possibly enables type Ia methanotrophs to respond robustly to fluctuating methane availability and explains their global prevalence.

摘要

理解基因型与表型之间的相互作用是功能基因组学的一个基本目标。甲烷氧化作为碳生物地球化学循环的一部分以及温室气体的一个汇,是一种具有全球规模意义的微生物表型。氧化甲烷的微生物(甲烷氧化菌)在分类学上具有多样性且遍布全球。在甲烷氧化细菌中,甲烷氧化代谢模块(KEGG模块M00174,甲烷转化为甲醛)中的酶由四个操纵子(、、和)编码。最近的报告表明,中的甲烷氧化菌通过水平基因转移获得了甲烷单加氧酶。在这里,我们使用基因组元分析来推断不同类型甲烷氧化菌的甲烷氧化代谢模块编码序列的转录和翻译优势。通过分析来自系统发育和地理上不同来源的分离株和宏基因组组装基因组,我们在I型a甲烷氧化菌的颗粒甲烷单加氧酶基因()的编码序列中检测到异常的核苷酸组成偏差。我们发现这种核苷酸偏差通过降低密码子第三位的GC含量来增加密码子偏差水平,这一策略与模块中的其他编码序列不同。进一步的密码子使用分析发现,I型a编码序列的密码子变体偏离基因组特征以匹配核糖体蛋白编码序列。随后,转录和翻译指标的计算表明,I型a甲烷氧化菌的编码序列优化了密码子变体的使用,以最大限度地提高翻译效率和准确性,同时最小化转录本和蛋白质的合成成本。微生物甲烷氧化在地球系统的生物地球化学循环中起着重要作用。最近的报告提供了证据,表明来自不同环境的甲烷氧化细菌通过水平基因转移获得了甲烷单加氧酶,但进化如何塑造编码序列以有效地进行甲烷营养作用仍未得到探索。在这项工作中,我们提供了基因组证据,表明在不同类型的甲烷氧化菌中,I型a甲烷氧化菌拥有操纵子的独特编码序列,该序列受到正选择以实现最佳资源分配以及转录本和蛋白质的高效合成。这种适应性特征可能使I型a甲烷氧化菌能够对波动的甲烷可用性做出有力反应,并解释了它们在全球的广泛分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验