Ulstrup Søren, Giusca Cristina E, Miwa Jill A, Sanders Charlotte E, Browning Alex, Dudin Pavel, Cacho Cephise, Kazakova Olga, Gaskill D Kurt, Myers-Ward Rachael L, Zhang Tianyi, Terrones Mauricio, Hofmann Philip
Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, 8000, Aarhus C, Denmark.
National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
Nat Commun. 2019 Jul 23;10(1):3283. doi: 10.1038/s41467-019-11253-2.
Control of atomic-scale interfaces between materials with distinct electronic structures is crucial for the design and fabrication of most electronic devices. In the case of two-dimensional materials, disparate electronic structures can be realized even within a single uniform sheet, merely by locally applying different vertical gate voltages. Here, we utilize the inherently nano-structured single layer and bilayer graphene on silicon carbide to investigate lateral electronic structure variations in an adjacent single layer of tungsten disulfide (WS). The electronic band alignments are mapped in energy and momentum space using angle-resolved photoemission with a spatial resolution on the order of 500 nm (nanoARPES). We find that the WS band offsets track the work function of the underlying single layer and bilayer graphene, and we relate such changes to observed lateral patterns of exciton and trion luminescence from WS.
控制具有不同电子结构的材料之间的原子尺度界面对于大多数电子器件的设计和制造至关重要。对于二维材料而言,即使在单个均匀薄片内,仅通过局部施加不同的垂直栅极电压,就能实现不同的电子结构。在此,我们利用碳化硅上固有的纳米结构单层和双层石墨烯,来研究相邻单层二硫化钨(WS)中的横向电子结构变化。利用空间分辨率约为500纳米的角分辨光电子能谱(nanoARPES),在能量和动量空间中绘制电子能带排列。我们发现,WS的能带偏移跟踪底层单层和双层石墨烯的功函数,并且我们将这种变化与从WS观察到的激子和三重子发光的横向模式联系起来。