Jones Alfred J H, Muzzio Ryan, Majchrzak Paulina, Pakdel Sahar, Curcio Davide, Volckaert Klara, Biswas Deepnarayan, Gobbo Jacob, Singh Simranjeet, Robinson Jeremy T, Watanabe Kenji, Taniguchi Takashi, Kim Timur K, Cacho Cephise, Lanata Nicola, Miwa Jill A, Hofmann Philip, Katoch Jyoti, Ulstrup Søren
Department of Physics and Astronomy, Aarhus University, Aarhus C, 8000, Denmark.
Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
Adv Mater. 2020 Aug;32(31):e2001656. doi: 10.1002/adma.202001656. Epub 2020 Jun 11.
The possibility of triggering correlated phenomena by placing a singularity of the density of states near the Fermi energy remains an intriguing avenue toward engineering the properties of quantum materials. Twisted bilayer graphene is a key material in this regard because the superlattice produced by the rotated graphene layers introduces a van Hove singularity and flat bands near the Fermi energy that cause the emergence of numerous correlated phases, including superconductivity. Direct demonstration of electrostatic control of the superlattice bands over a wide energy range has, so far, been critically missing. This work examines the effect of electrical doping on the electronic band structure of twisted bilayer graphene using a back-gated device architecture for angle-resolved photoemission measurements with a nano-focused light spot. A twist angle of 12.2° is selected such that the superlattice Brillouin zone is sufficiently large to enable identification of van Hove singularities and flat band segments in momentum space. The doping dependence of these features is extracted over an energy range of 0.4 eV, expanding the combinations of twist angle and doping where they can be placed at the Fermi energy and thereby induce new correlated electronic phases in twisted bilayer graphene.
通过在费米能量附近放置态密度奇点来触发相关现象的可能性,仍然是实现量子材料特性工程的一条引人入胜的途径。在这方面,扭曲双层石墨烯是一种关键材料,因为旋转的石墨烯层产生的超晶格在费米能量附近引入了范霍夫奇点和平带,从而导致包括超导性在内的众多相关相的出现。到目前为止,在很宽的能量范围内对超晶格能带进行静电控制的直接证明一直严重缺失。这项工作使用具有纳米聚焦光斑的背栅器件结构,用于角分辨光电子能谱测量,研究了电掺杂对扭曲双层石墨烯电子能带结构的影响。选择12.2°的扭曲角,使得超晶格布里渊区足够大,以便能够在动量空间中识别范霍夫奇点和平带段。在0.4 eV的能量范围内提取这些特征的掺杂依赖性,扩展了扭曲角和掺杂的组合,在这些组合中它们可以位于费米能量处,从而在扭曲双层石墨烯中诱导出新的相关电子相。