Department of Physics, University of Warwick, Coventry CV4 7AL, U.K.
Department of Physics, University of Washington, Seattle, WA 98195, USA.
Sci Adv. 2017 Feb 8;3(2):e1601832. doi: 10.1126/sciadv.1601832. eCollection 2017 Feb.
Combining monolayers of different two-dimensional semiconductors into heterostructures creates new phenomena and device possibilities. Understanding and exploiting these phenomena hinge on knowing the electronic structure and the properties of interlayer excitations. We determine the key unknown parameters in MoSe/WSe heterobilayers by using rational device design and submicrometer angle-resolved photoemission spectroscopy (μ-ARPES) in combination with photoluminescence. We find that the bands in the K-point valleys are weakly hybridized, with a valence band offset of 300 meV, implying type II band alignment. We deduce that the binding energy of interlayer excitons is more than 200 meV, an order of magnitude higher than that in analogous GaAs structures. Hybridization strongly modifies the bands at Γ, but the valence band edge remains at the K points. We also find that the spectrum of a rotationally aligned heterobilayer reflects a mixture of commensurate and incommensurate domains. These results directly answer many outstanding questions about the electronic nature of MoSe/WSe heterobilayers and demonstrate a practical approach for high spectral resolution in ARPES of device-scale structures.
将不同二维半导体的单层组合成异质结构会产生新的现象和器件可能性。理解和利用这些现象取决于了解电子结构和层间激发的性质。我们通过合理的器件设计和亚微米角分辨光发射谱(μ-ARPES)与光致发光相结合,确定了 MoSe/WSe 异质双层中的关键未知参数。我们发现 K 点谷中的能带弱混合,价带偏移为 300 meV,表明为 II 型能带排列。我们推断层间激子的结合能超过 200 meV,比类似的 GaAs 结构高一个数量级。杂化强烈地改变了 Γ 处的能带,但价带边缘仍在 K 点。我们还发现,旋转对准的异质双层的光谱反映了共形和非共形畴的混合物。这些结果直接回答了关于 MoSe/WSe 异质双层电子性质的许多悬而未决的问题,并展示了在器件规模结构的 ARPES 中实现高光谱分辨率的实用方法。