Kawrani Sara, Boulos Madona, Cornu David, Bechelany Mikhael
Institut Européen des Membranes ENSCM CNRS Univ Montpellier France.
Laboratoire de Chimie Physique des matériaux Université Libanaise Liban.
ChemistryOpen. 2019 Jul 12;8(7):922-950. doi: 10.1002/open.201900133. eCollection 2019 Jul.
Investigations focusing on electrical energy storage capacitors especially the dielectric ceramic capacitors for high energy storage density are attracting more and more attention in the recent years. Ceramic capacitors possess a faster charge-discharge rate and improved mechanical and thermal properties compared with other energy storage devices such as batteries. The challenge is to obtain ceramic capacitors with outstanding mechanical, thermal and storage properties over large temperature and frequencies ranges. ABO as a type of perovskites showed a strong piezoelectric, dielectric, pyroelectric, and electro-optic properties useful as energy storage and environmental devices. CaCuTiO (CCTO) perovskite with cubic lattice (Im3 symmetry) was discovered to have a colossal dielectric constant (10) that is stable over a wide range of frequencies (10 Hz-1 MHz) and temperature independence (100-300 K). The origin of this high dielectric constant is not fully established, specially because it is the same for single crystal and thin films. In this review, the history of CCTO will be introduced. The synthesis and the sintering approaches, the dopant elements used as well as the applications of CCTO will be reported. In addition to dielectrical properties useful to energy storage devices; CCTO could serve as photocatalytic materials with a very good performance in visible light.
近年来,针对电能存储电容器,尤其是用于高储能密度的介电陶瓷电容器的研究越来越受到关注。与电池等其他储能装置相比,陶瓷电容器具有更快的充放电速率以及更好的机械和热性能。挑战在于要获得在较大温度和频率范围内具有优异机械、热和储能性能的陶瓷电容器。ABO作为一种钙钛矿,表现出强大的压电、介电、热释电和电光特性,可用于储能和环境装置。具有立方晶格(Im3对称性)的CaCuTiO(CCTO)钙钛矿被发现具有巨大的介电常数(10),该介电常数在很宽的频率范围(10 Hz - 1 MHz)内稳定且与温度无关(100 - 300 K)。这种高介电常数的起源尚未完全明确,特别是因为单晶和薄膜的情况相同。在本综述中,将介绍CCTO的历史。将报道CCTO的合成和烧结方法、所使用的掺杂元素以及其应用。除了对储能装置有用的介电性能外,CCTO还可作为在可见光下具有非常好性能的光催化材料。