Department of Neurology, Xi'an XD Group Hospital, Xi'an, 710077, Shaanxi, China.
J Med Syst. 2019 Jul 23;43(9):292. doi: 10.1007/s10916-019-1424-0.
Existing brain region segmentation algorithms based on deep convolutional neural networks (CNN) are inefficient for object boundary segmentation. In order to enhance the segmentation accuracy of brain tissue, this paper proposed an object region segmentation algorithm that combines pixel-level information and semantic information. Firstly, we extract semantic information by CNN with the attention module and get the coarse segmentation results through a specific pixel-level classifier. Then, we exploit conditional random fields to model the relationship between the underlying pixels so as to get local features. Finally, the semantic information and the local pixel-level information are respectively used as the unary potential and the binary potential of the Gibbs distribution, and the combination of both can obtain the fine region segmentation algorithm based on the fusion of pixel-level information and the semantic information. A large number of qualitative and quantitative test results show that our proposed algorithm has higher precision than the existing state-of-the-art deep feature models, which can better solve the problem of rough edge segmentation and produce good 3D visualization effect.
现有的基于深度卷积神经网络 (CNN) 的脑区分割算法在对象边界分割方面效率不高。为了提高脑组织的分割精度,本文提出了一种结合像素级信息和语义信息的目标区域分割算法。首先,我们通过带有注意力模块的 CNN 提取语义信息,并通过特定的像素级分类器获得粗略的分割结果。然后,我们利用条件随机场来建模底层像素之间的关系,以获取局部特征。最后,将语义信息和局部像素级信息分别作为吉布斯分布的一元势和二元势,两者的结合可以得到基于像素级信息和语义信息融合的精细区域分割算法。大量定性和定量的测试结果表明,我们提出的算法比现有的先进的深度特征模型具有更高的精度,能够更好地解决边缘分割粗糙的问题,并产生良好的 3D 可视化效果。