Centre for Health Economics, University of York, York, UK.
Department of Family Medicine and Primary Care, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
Eur J Health Econ. 2019 Nov;20(8):1195-1206. doi: 10.1007/s10198-019-01088-5. Epub 2019 Jul 23.
To develop algorithms mapping the Kidney Disease Quality of Life 36-Item Short Form Survey (KDQOL-36) onto the 3-level EQ-5D questionnaire (EQ-5D-3L) and the 5-level EQ-5D questionnaire (EQ-5D-5L) for patients with end-stage renal disease requiring dialysis.
We used data from a cross-sectional study in Europe (France, n = 299; Germany, n = 413; Italy, n = 278; Spain, n = 225) to map onto EQ-5D-3L and data from a cross-sectional study in Singapore (n = 163) to map onto EQ-5D-5L. Direct mapping using linear regression, mixture beta regression and adjusted limited dependent variable mixture models (ALDVMMs) and response mapping using seemingly unrelated ordered probit models were performed. The KDQOL-36 subscale scores, i.e., physical component summary (PCS), mental component summary (MCS), three disease-specific subscales or their average, i.e., kidney disease component summary (KDCS), and age and sex were included as the explanatory variables. Predictive performance was assessed by mean absolute error (MAE) and root mean square error (RMSE) using 10-fold cross-validation.
Mixture models outperformed linear regression and response mapping. When mapping to EQ-5D-3L, the ALDVMM model was the best-performing one for France, Germany and Spain while beta regression was best for Italy. When mapping to EQ-5D-5L, the ALDVMM model also demonstrated the best predictive performance. Generally, models using KDQOL-36 subscale scores showed better fit than using the KDCS.
This study adds to the growing literature suggesting the better performance of the mixture models in modelling EQ-5D and produces algorithms to map the KDQOL-36 onto EQ-5D-3L (for France, Germany, Italy, and Spain) and EQ-5D-5L (for Singapore).
开发一种算法,将肾脏病生活质量 36 项简表调查(KDQOL-36)映射到终末期肾病透析患者的 3 级 EQ-5D 问卷(EQ-5D-3L)和 5 级 EQ-5D 问卷(EQ-5D-5L)。
我们使用了来自欧洲(法国,n=299;德国,n=413;意大利,n=278;西班牙,n=225)一项横断面研究的数据来映射到 EQ-5D-3L,以及来自新加坡一项横断面研究的数据(n=163)来映射到 EQ-5D-5L。使用线性回归、混合贝塔回归和调整有限依赖变量混合模型(ALDVMM)进行直接映射,使用看似不相关有序概率模型进行响应映射。KDQOL-36 分量评分,即身体成分综合评分(PCS)、心理成分综合评分(MCS)、三个疾病特异性分量评分或其平均值,即肾脏病成分综合评分(KDCS),以及年龄和性别被用作解释变量。使用 10 折交叉验证评估预测性能,通过平均绝对误差(MAE)和均方根误差(RMSE)进行评估。
混合模型优于线性回归和响应映射。当映射到 EQ-5D-3L 时,ADLVMM 模型在法国、德国和西班牙的表现最佳,而贝塔回归在意大利的表现最佳。当映射到 EQ-5D-5L 时,ADLVMM 模型也表现出了最佳的预测性能。一般来说,使用 KDQOL-36 分量评分的模型比使用 KDCS 的模型表现出更好的拟合度。
本研究增加了越来越多的文献表明混合模型在模拟 EQ-5D 方面的表现更好,并生成了将 KDQOL-36 映射到 EQ-5D-3L(适用于法国、德国、意大利和西班牙)和 EQ-5D-5L(适用于新加坡)的算法。