Suppr超能文献

运用机器学习技术对非偏好为基础的患者报告结局测量指标进行健康状态效用值映射分析。

An examination of machine learning to map non-preference based patient reported outcome measures to health state utility values.

机构信息

Macquarie University Centre for the Health Economy, Macquarie University, Sydney, New South Wales, Australia.

Department of Economics, Macquarie Business School, Macquarie University, Sydney, New South Wales, Australia.

出版信息

Health Econ. 2022 Aug;31(8):1525-1557. doi: 10.1002/hec.4503. Epub 2022 Jun 15.

Abstract

Non-preference-based patient-reported outcome measures (PROMs) are popular in health outcomes research. These measures, however, cannot be used to estimate health state utilities, limiting their usefulness for economic evaluations. Mapping PROMs to a multi-attribute utility instrument is one solution. While mapping is commonly conducted using econometric techniques, failing to specify the complex interactions between variables may lead to inaccurate prediction of utilities, resulting in inaccurate estimates of cost-effectiveness and suboptimal funding decisions. These issues can be addressed using machine learning. This paper evaluates the use of machine learning as a mapping tool. We adopt a comprehensive approach to compare six machine learning techniques with eight econometric techniques to map the Patient-Reported Outcomes Measurement Information System Global Health 10 (PROMIS-GH10) to the EuroQol five dimensions (EQ-5D-5L). Using data collected from 2015 Australians, we find the least absolute shrinkage and selection operator (LASSO) model out-performed all machine learning techniques and the adjusted limited dependent variable mixture model (ALDVMM) out-performed all econometric techniques, with the LASSO performing better than ALDVMM. The variable selection feature of LASSO was then used to enhance the performance of the ALDVMM in a hybrid model. Our analysis identifies the potential benefits and challenges of using machine learning techniques for mapping and offers important insights for future research.

摘要

非偏好型患者报告结局测量(PROM)在健康结局研究中很受欢迎。然而,这些测量方法不能用于估计健康状态效用,这限制了它们在经济评估中的有用性。将 PROM 映射到多属性效用工具是一种解决方案。虽然映射通常使用计量经济学技术进行,但未能指定变量之间的复杂相互作用可能导致效用的预测不准确,从而导致成本效益的估计不准确和资金决策不理想。这些问题可以通过机器学习来解决。本文评估了机器学习作为映射工具的使用。我们采用综合方法,将六种机器学习技术与八种计量经济学技术进行比较,将患者报告结局测量信息系统全球健康 10 项(PROMIS-GH10)映射到欧洲五维健康量表(EQ-5D-5L)。使用 2015 年澳大利亚人收集的数据,我们发现最小绝对收缩和选择算子(LASSO)模型的表现优于所有机器学习技术,调整后的有限依赖变量混合模型(ALDVMM)优于所有计量经济学技术,LASSO 的表现优于 ALDVMM。然后,使用 LASSO 的变量选择功能来增强混合模型中 ALDVMM 的性能。我们的分析确定了使用机器学习技术进行映射的潜在优势和挑战,并为未来的研究提供了重要的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4065/9545032/8eb2e10538c3/HEC-31-1525-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验