Zanders David, Ciftyurek Engin, Subaşı Ersoy, Huster Niklas, Bock Claudia, Kostka Aleksander, Rogalla Detlef, Schierbaum Klaus, Devi Anjana
Department of Materials Science, Institute of Experimental Physics and Condensed Matter , Heinrich-Heine-University Düsseldorf , 40225 Düsseldorf , Germany.
ACS Appl Mater Interfaces. 2019 Aug 7;11(31):28407-28422. doi: 10.1021/acsami.9b07090. Epub 2019 Jul 24.
A bottom-up approach starting with the development of new Hf precursors for plasma-enhanced atomic layer deposition (PEALD) processes for HfO followed by in situ thin-film surface characterization of HfO upon exposure to reactive gases via near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) is reported. The stability of thin films under simulated operational conditions is assessed, and the successful implementation of HfO dielectric layers in metal-insulator-semiconductor (MIS) capacitors is demonstrated. Among the series of newly synthesized mono-guanidinato-tris-dialkyl-amido class of Hf precursors, one of them, namely, [Hf{η-(PrN)CNEtMe}(NEtMe)], was representatively utilized with oxygen plasma, resulting in a highly promising low-temperature PEALD process at 60 °C. The new precursors were synthesized in the multigram scale and thoroughly characterized by thermogravimetric analyses, revealing high and tunable volatility reflected by appreciable vapor pressures and accompanied by thermal stability. Typical ALD growth characteristics in terms of linearity, saturation, and a broad ALD window with constant growth of 1.06 Å cycle in the temperature range of 60-240 °C render this process very promising for fabricating high-purity smooth HfO layers. For the first time, NAP-XPS surface studies on selected HfO layers are reported upon exposure to reactive H, O, and HO atmospheres at temperatures of up to 500 °C revealing remarkable stability against degradation. This can be attributed to the absence of surface defects and vacancies. On the basis of these promising results, PEALD-grown HfO films were used as dielectric layers in the MIS capacitor device fabrication exhibiting leakage current densities less than 10 A cm at 2 MV cm and permittivities of up to 13.9 without postannealing.
报道了一种自下而上的方法,该方法首先开发用于HfO的等离子体增强原子层沉积(PEALD)工艺的新型Hf前驱体,然后通过近常压X射线光电子能谱(NAP-XPS)对暴露于反应气体中的HfO进行原位薄膜表面表征。评估了薄膜在模拟操作条件下的稳定性,并证明了HfO介电层在金属-绝缘体-半导体(MIS)电容器中的成功应用。在一系列新合成的单胍基-三二烷基酰胺类Hf前驱体中,其中一种,即[Hf{η-(PrN)CNEtMe}(NEtMe)],被代表性地用于氧等离子体,从而在60°C下实现了极有前景的低温PEALD工艺。新的前驱体以多克规模合成,并通过热重分析进行了全面表征,结果显示出高且可调节的挥发性,表现为可观的蒸气压,并具有热稳定性。在60-240°C的温度范围内,该工艺具有线性、饱和性等典型的ALD生长特性以及宽ALD窗口,且每循环恒定生长1.06 Å,这使得该工艺在制备高纯度光滑HfO层方面非常有前景。首次报道了在高达500°C的温度下,对选定的HfO层暴露于反应性H、O和HO气氛后的NAP-XPS表面研究,结果显示出对降解具有显著的稳定性。这可归因于表面缺陷和空位的不存在。基于这些有前景的结果,PEALD生长的HfO薄膜被用作MIS电容器器件制造中的介电层,在2 MV cm下的漏电流密度小于10 A cm,且介电常数高达13.9,无需进行后退火处理。