Ecology and Environment Research Centre, Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK.
School of Environment and Life Sciences, University of Salford, Salford, UK.
Mol Ecol Resour. 2019 Nov;19(6):1672-1680. doi: 10.1111/1755-0998.13065. Epub 2019 Aug 27.
Bespoke microsatellite marker panels are increasingly affordable and tractable to researchers and conservationists. The rate of microsatellite discovery is very high within a shotgun genomic data set, but extensive laboratory testing of markers is required for confirmation of amplification and polymorphism. By incorporating shotgun next-generation sequencing data sets from multiple individuals of the same species, we have developed a new method for the optimal design of microsatellite markers. This new tool allows us to increase the rate at which suitable candidate markers are selected by 58% in direct comparisons and facilitate an estimated 16% reduction in costs associated with producing a novel microsatellite panel. Our method enables the visualisation of each microsatellite locus in a multiple sequence alignment allowing several important quality checks to be made. Polymorphic loci can be identified and prioritised. Loci containing fragment-length-altering mutations in the flanking regions, which may invalidate assumptions regarding the model of evolution underlying variation at the microsatellite, can be avoided. Priming regions containing point mutations can be detected and avoided, helping to reduce sample-site-marker specificity arising from genetic isolation, and the likelihood of null alleles occurring. We demonstrate the utility of this new approach in two species: an echinoderm and a bird. Our method makes a valuable contribution towards minimising genotyping errors and reducing costs associated with developing a novel marker panel. The Python script to perform our method of multi-individual microsatellite identification (MiMi) is freely available from GitHub (https://github.com/graemefox/mimi).
定制的微卫星标记面板越来越实惠,也越来越容易被研究人员和自然资源保护主义者使用。在 shotgun 基因组数据集内发现微卫星的速度非常高,但需要对标记进行广泛的实验室测试,以确认其扩增和多态性。通过整合来自同一物种多个个体的 shotgun 下一代测序数据集,我们开发了一种新的微卫星标记最佳设计方法。这种新工具使我们能够直接比较提高适合候选标记的选择速度 58%,并有助于估计降低与制作新的微卫星面板相关的成本 16%。我们的方法可以在多重序列比对中可视化每个微卫星位点,从而可以进行多项重要的质量检查。可以识别和优先考虑多态性位点。可以避免侧翼区域存在片段长度改变突变的位点,这些突变可能会使基于微卫星变异的进化模型的假设无效。可以检测和避免包含点突变的引物区域,有助于减少由于遗传隔离引起的样本位点标记特异性,以及出现无效等位基因的可能性。我们在两个物种中展示了这种新方法的实用性:一种棘皮动物和一种鸟类。我们的方法为最小化基因分型错误和降低开发新标记面板的相关成本做出了有价值的贡献。用于执行我们的多个体微卫星识别 (MiMi) 方法的 Python 脚本可从 GitHub(https://github.com/graemefox/mimi)免费获得。