Faculty of Sciences, University of Porto, Porto, Portugal.
CIBIO, InBIO-Research Network in Biodiversity and Evolutionary Biology, Porto, Portugal.
Sci Rep. 2022 Jan 7;12(1):295. doi: 10.1038/s41598-021-04275-8.
Analysis of intra- and inter-population diversity has become important for defining the genetic status and distribution patterns of a species and a powerful tool for conservation programs, as high levels of inbreeding could lead into whole population extinction in few generations. Microsatellites (SSR) are commonly used in population studies but discovering highly variable regions across species' genomes requires demanding computation and laboratorial optimization. In this work, we combine next generation sequencing (NGS) with automatic computing to develop a genomic-oriented tool for characterizing SSRs at the population level. Herein, we describe a new Python pipeline, named Micro-Primers, designed to identify, and design PCR primers for amplification of SSR loci from a multi-individual microsatellite library. By combining commonly used programs for data cleaning and microsatellite mining, this pipeline easily generates, from a fastq file produced by high-throughput sequencing, standard information about the selected microsatellite loci, including the number of alleles in the population subset, and the melting temperature and respective PCR product of each primer set. Additionally, potential polymorphic loci can be identified based on the allele ranges observed in the population, to easily guide the selection of optimal markers for the species. Experimental results show that Micro-Primers significantly reduces processing time in comparison to manual analysis while keeping the same quality of the results. The elapsed times at each step can be longer depending on the number of sequences to analyze and, if not assisted, the selection of polymorphic loci from multiple individuals can represent a major bottleneck in population studies.
对种群内和种群间的多样性进行分析,对于确定一个物种的遗传状况和分布模式变得非常重要,并且是保护计划的有力工具,因为高度的近亲繁殖可能导致整个种群在几代内灭绝。微卫星(SSR)常用于种群研究,但要在物种基因组中发现高度变异的区域,需要进行苛刻的计算和实验室优化。在这项工作中,我们结合下一代测序(NGS)和自动计算,开发了一种用于在种群水平上表征 SSR 的面向基因组的工具。在此,我们描述了一种新的 Python 管道,名为 Micro-Primers,用于从多个体微卫星文库中识别和设计用于扩增 SSR 位点的 PCR 引物。通过将常用于数据清理和微卫星挖掘的常用程序结合使用,该管道可以从高通量测序产生的 fastq 文件中轻松生成所选微卫星位点的标准信息,包括群体亚群中的等位基因数,以及每个引物对的熔点和相应的 PCR 产物。此外,可以根据群体中观察到的等位基因范围来识别潜在的多态性位点,从而轻松指导为物种选择最佳标记。实验结果表明,与手动分析相比,Micro-Primers 大大减少了处理时间,同时保持了相同的结果质量。每个步骤的耗时可能会更长,具体取决于要分析的序列数量,如果没有辅助,从多个个体中选择多态性位点可能会成为种群研究的主要瓶颈。