Hume Samantha, Hithell Gordon, Greetham Gregory M, Donaldson Paul M, Towrie Michael, Parker Anthony W, Baker Matthew J, Hunt Neil T
Department of Physics , University of Strathclyde , SUPA , 107 Rottenrow East , Glasgow , G4 0NG , UK.
STFC Central Laser Facility , Research Complex at Harwell , Rutherford Appleton Laboratory , Harwell Campus , Didcot , OX11 0QX , UK.
Chem Sci. 2019 May 14;10(26):6448-6456. doi: 10.1039/c9sc01590f. eCollection 2019 Jul 14.
The amide I infrared band of proteins is highly sensitive to secondary structure, but studies under physiological conditions are prevented by strong, overlapping water absorptions, motivating the widespread use of deuterated solutions. H/D exchange raises fundamental questions regarding the impact of increased mass on protein dynamics, while deuteration is impractical for biomedical or commercial applications of protein IR spectroscopy. We show that 2D-IR spectroscopy can avoid this problem because the 2D-IR amide I signature of proteins dominates that of water even at sub-millimolar protein concentrations. Using equine blood serum as a test system, we investigate the significant implications of being able to measure the spectroscopy and dynamics of proteins in water, demonstrating relevance in areas ranging from fundamental science to the clinic. Measurements of vibrational relaxation dynamics of serum proteins reveals that deuteration slows down the rate of amide I vibrational relaxation by >10%, indicating a dynamic impact of isotopic exchange in some proteins. The unique link between protein secondary structure and 2D-IR amide I lineshape allows differentiation of signals due to albumin and globulin protein fractions in serum leading to measurements of the biomedically-important albumin to globulin ratio (AGR) with an accuracy of ±4% across a clinically-relevant range. Furthermore, we demonstrate that 2D-IR spectroscopy enables differentiation of the structurally similar globulin proteins IgG, IgA and IgM, opening up a straightforward spectroscopic approach to measuring levels of serum proteins that are currently only accessible biomedical laboratory testing.
蛋白质的酰胺I红外波段对二级结构高度敏感,但在生理条件下进行的研究受到强烈且重叠的水吸收的阻碍,这促使氘代溶液被广泛使用。氢/氘交换引发了关于质量增加对蛋白质动力学影响的基本问题,而氘代对于蛋白质红外光谱的生物医学或商业应用并不实用。我们表明二维红外光谱可以避免这个问题,因为即使在亚毫摩尔蛋白质浓度下,蛋白质的二维红外酰胺I特征也比水的特征更显著。使用马血清作为测试系统,我们研究了能够在水中测量蛋白质光谱和动力学的重大意义,证明了其在从基础科学到临床等领域的相关性。血清蛋白质振动弛豫动力学的测量结果表明,氘代使酰胺I振动弛豫速率减慢超过10%,这表明同位素交换对某些蛋白质有动态影响。蛋白质二级结构与二维红外酰胺I线形之间的独特联系使得能够区分血清中白蛋白和球蛋白部分产生的信号,从而在临床相关范围内以±4%的准确度测量生物医学上重要的白蛋白与球蛋白比率(AGR)。此外,我们证明二维红外光谱能够区分结构相似的球蛋白IgG、IgA和IgM,开辟了一种直接的光谱方法来测量目前只能通过生物医学实验室检测获得的血清蛋白质水平。