Suppr超能文献

全卷积神经网络的并行架构在视网膜血管分割中的应用。

Parallel Architecture of Fully Convolved Neural Network for Retinal Vessel Segmentation.

机构信息

Department of ECE, Mepco Schlenk Engineering College, Sivakasi, Tamilnadu, 626005, India.

出版信息

J Digit Imaging. 2020 Feb;33(1):168-180. doi: 10.1007/s10278-019-00250-y.

Abstract

Retinal blood vessel extraction is considered to be the indispensable action for the diagnostic purpose of many retinal diseases. In this work, a parallel fully convolved neural network-based architecture is proposed for the retinal blood vessel segmentation. Also, the network performance improvement is studied by applying different levels of preprocessed images. The proposed method is experimented on DRIVE (Digital Retinal Images for Vessel Extraction) and STARE (STructured Analysis of the Retina) which are the widely accepted public database for this research area. The proposed work attains high accuracy, sensitivity, and specificity of about 96.37%, 86.53%, and 98.18% respectively. Data independence is also proved by testing abnormal STARE images with DRIVE trained model. The proposed architecture shows better result in the vessel extraction irrespective of vessel thickness. The obtained results show that the proposed work outperforms most of the existing segmentation methodologies, and it can be implemented as the real time application tool since the entire work is carried out on CPU. The proposed work is executed with low-cost computation; at the same time, it takes less than 2 s per image for vessel extraction.

摘要

视网膜血管提取被认为是许多视网膜疾病诊断目的不可或缺的操作。在这项工作中,提出了一种基于并行全卷积神经网络的架构,用于视网膜血管分割。此外,还通过应用不同级别的预处理图像来研究网络性能的提高。该方法在广泛接受的该研究领域的公共数据库 DRIVE(血管提取的数字视网膜图像)和 STARE(视网膜结构分析)上进行了实验。所提出的方法分别达到了约 96.37%、86.53%和 98.18%的高精度、高灵敏度和高特异性。通过使用 DRIVE 训练模型测试异常 STARE 图像,也证明了数据独立性。所提出的架构在血管提取方面表现出更好的效果,无论血管厚度如何。所获得的结果表明,该方法优于大多数现有的分割方法,并且由于整个工作都是在 CPU 上进行的,因此可以实现为实时应用工具。该方法的计算成本低,提取每条血管的时间不到 2 秒。

相似文献

5
Scale-space approximated convolutional neural networks for retinal vessel segmentation.用于视网膜血管分割的尺度空间逼近卷积神经网络。
Comput Methods Programs Biomed. 2019 Sep;178:237-246. doi: 10.1016/j.cmpb.2019.06.030. Epub 2019 Jun 29.

本文引用的文献

3
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.SegNet:一种用于图像分割的深度卷积编解码器架构。
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.
4
Segmenting Retinal Blood Vessels With Deep Neural Networks.基于深度神经网络的视网膜血管分割。
IEEE Trans Med Imaging. 2016 Nov;35(11):2369-2380. doi: 10.1109/TMI.2016.2546227. Epub 2016 Mar 24.
5
A Cross-Modality Learning Approach for Vessel Segmentation in Retinal Images.一种视网膜图像血管分割的跨模态学习方法。
IEEE Trans Med Imaging. 2016 Jan;35(1):109-18. doi: 10.1109/TMI.2015.2457891. Epub 2015 Jul 17.
9
FABC: retinal vessel segmentation using AdaBoost.FABC:使用AdaBoost的视网膜血管分割
IEEE Trans Inf Technol Biomed. 2010 Sep;14(5):1267-74. doi: 10.1109/TITB.2010.2052282. Epub 2010 Jun 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验