Suppr超能文献

微机电系统(MEMS)磁盘谐振器陀螺仪中的能量损耗

Energy Loss in a MEMS Disk Resonator Gyroscope.

作者信息

Xie Jianbing, Hao Yongcun, Yuan Weizheng

机构信息

School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.

Key Laboratory of Micro/Nano Systems for Aerospace, Ministry of Education, Xi'an 710072, China.

出版信息

Micromachines (Basel). 2019 Jul 24;10(8):493. doi: 10.3390/mi10080493.

Abstract

Analysing and minimizing energy loss is crucial for high performance disk resonator gyroscopes (DRGs). Generally, the primary energy loss mechanism for high vacuum packaged microelectromechanical system (MEMS) resonators includes thermoelastic damping, anchor loss, and electronic damping. In this paper, the thermoelastic damping, anchor loss, and electronic damping for our DRG design are calculated by combining finite element analysis and theoretical derivation. Thermoelastic damping is the dominant energy loss mechanism and contributes over 90% of the total dissipated energy. Benefiting from a symmetrical structure, the anchor loss is low and can be neglected. However, the electronic damping determined by the testing circuit contributes 2.6%-9.6% when the bias voltage increases from 10 V to 20 V, which has a considerable impact on the total quality factor (Q). For comparison, the gyroscope is fabricated and seal-packaged with a measured maximum Q range of 141k to 132k when the bias voltage varies. In conclusion, thermoelastic damping and electronic damping essentially determine the Q of the DRG. Thus, optimizing the resonance structure and testing the circuit to reduce energy loss is prioritized for a high-performance DRG design.

摘要

分析并最小化能量损耗对于高性能盘式谐振器陀螺仪(DRG)至关重要。一般来说,高真空封装的微机电系统(MEMS)谐振器的主要能量损耗机制包括热弹性阻尼、锚点损耗和电子阻尼。在本文中,通过结合有限元分析和理论推导,计算了我们的DRG设计中的热弹性阻尼、锚点损耗和电子阻尼。热弹性阻尼是主要的能量损耗机制,占总耗散能量的90%以上。得益于对称结构,锚点损耗较低,可以忽略不计。然而,当偏置电压从10 V增加到20 V时,由测试电路确定的电子阻尼贡献了2.6% - 9.6%,这对总品质因数(Q)有相当大的影响。作为比较,制造并密封封装了该陀螺仪,当偏置电压变化时,测得的最大Q范围为141k至132k。总之,热弹性阻尼和电子阻尼本质上决定了DRG的Q。因此,对于高性能DRG设计,优先考虑优化谐振结构并测试电路以减少能量损耗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf41/6723098/f9aced7cb82c/micromachines-10-00493-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验