Suppr超能文献

建立乳腺癌骨转移模型:驱动基因突变顺序和代谢的重要性。

Modeling breast cancer progression to bone: how driver mutation order and metabolism matter.

机构信息

Department of Computer Science and Technology, Computer Laboratory, University of Cambridge, William Gates Building, 15 JJ Thomson Avenue, Cambridge, CB3 0FD, UK.

Department of Oncology & Metabolism, The University of Sheffield, Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.

出版信息

BMC Med Genomics. 2019 Jul 25;12(Suppl 6):106. doi: 10.1186/s12920-019-0541-4.

Abstract

BACKGROUND

Not all the mutations are equally important for the development of metastasis. What about their order? The survival of cancer cells from the primary tumour site to the secondary seeding sites depends on the occurrence of very few driver mutations promoting oncogenic cell behaviours. Usually these driver mutations are among the most effective clinically actionable target markers. The quantitative evaluation of the effects of a mutation across primary and secondary sites is an important challenging problem that can lead to better predictability of cancer progression trajectory.

RESULTS

We introduce a quantitative model in the framework of Cellular Automata to investigate the effects of metabolic mutations and mutation order on cancer stemness and tumour cell migration from breast, blood to bone metastasised sites. Our approach models three types of mutations: driver, the order of which is relevant for the dynamics, metabolic which support cancer growth and are estimated from existing databases, and non-driver mutations. We integrate the model with bioinformatics analysis on a cancer mutation database that shows metabolism-modifying alterations constitute an important class of key cancer mutations.

CONCLUSIONS

Our work provides a quantitative basis of how the order of driver mutations and the number of mutations altering metabolic processis matter for different cancer clones through their progression in breast, blood and bone compartments. This work is innovative because of multi compartment analysis and could impact proliferation of therapy-resistant clonal populations and patient survival. Mathematical modelling of the order of mutations is presented in terms of operators in an accessible way to the broad community of researchers in cancer models so to inspire further developments of this useful (and underused in biomedical models) methodology. We believe our results and the theoretical framework could also suggest experiments to measure the overall personalised cancer mutational signature.

摘要

背景

并非所有突变对于转移的发展都同等重要。它们的顺序如何?癌细胞从原发性肿瘤部位存活到继发性播种部位取决于极少数促进致癌细胞行为的驱动突变的发生。通常这些驱动突变是最有效的临床可操作的靶向标志物之一。定量评估突变在原发性和继发性部位的影响是一个重要的挑战性问题,可以提高癌症进展轨迹的可预测性。

结果

我们在元胞自动机框架中引入了一个定量模型,以研究代谢突变和突变顺序对乳腺癌、血液到骨骼转移部位的癌症干性和肿瘤细胞迁移的影响。我们的方法模型了三种类型的突变:驱动突变,其顺序对于动力学很重要;代谢突变,支持癌症生长,并且可以从现有的数据库中估计;以及非驱动突变。我们将该模型与癌症突变数据库的生物信息学分析相结合,该数据库表明代谢改变的改变构成了关键癌症突变的一个重要类别。

结论

我们的工作提供了一个定量基础,说明驱动突变的顺序和改变代谢过程的突变数量如何通过它们在乳腺、血液和骨骼隔室中的进展对不同的癌症克隆产生影响。这项工作是创新的,因为它进行了多隔室分析,可能会影响治疗耐药克隆群体的增殖和患者的生存。以可访问的方式将突变的顺序表示为算子,为癌症模型的研究人员提供了一个广泛的社区,以激发这种有用的(在生物医学模型中未被充分利用)方法的进一步发展。我们相信,我们的结果和理论框架也可以提出测量个体癌症突变特征的整体的实验建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb23/6657267/29c2c658b99b/12920_2019_541_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验