Suppr超能文献

通过计算方法对人类乳腺癌中潜在驱动突变的特征分析。

Characterization of potential driver mutations involved in human breast cancer by computational approaches.

作者信息

Rajendran Barani Kumar, Deng Chu-Xia

机构信息

Cancer Research Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China.

出版信息

Oncotarget. 2017 Jul 25;8(30):50252-50272. doi: 10.18632/oncotarget.17225.

Abstract

Breast cancer is the second most frequently occurring form of cancer and is also the second most lethal cancer in women worldwide. A genetic mutation is one of the key factors that alter multiple cellular regulatory pathways and drive breast cancer initiation and progression yet nature of these cancer drivers remains elusive. In this article, we have reviewed various computational perspectives and algorithms for exploring breast cancer driver mutation genes. Using both frequency based and mutational exclusivity based approaches, we identified 195 driver genes and shortlisted 63 of them as candidate drivers for breast cancer using various computational approaches. Finally, we conducted network and pathway analysis to explore their functions in breast tumorigenesis including tumor initiation, progression, and metastasis.

摘要

乳腺癌是第二常见的癌症形式,也是全球女性中第二大致命性癌症。基因突变是改变多种细胞调节途径并驱动乳腺癌发生和发展的关键因素之一,然而这些癌症驱动因素的本质仍然难以捉摸。在本文中,我们回顾了用于探索乳腺癌驱动基因突变基因的各种计算观点和算法。使用基于频率和基于突变互斥性的方法,我们鉴定出195个驱动基因,并使用各种计算方法将其中63个列为乳腺癌的候选驱动基因。最后,我们进行了网络和通路分析,以探索它们在乳腺肿瘤发生中的功能,包括肿瘤起始、进展和转移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验