Israel Naval Medical Institute, Haifa, Israel.
Department of Physiology and Cell Biology, Faculty of Health Sciences, and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
Sci Rep. 2019 Jul 25;9(1):10814. doi: 10.1038/s41598-019-47102-x.
Professional divers exposed to ambient pressures above 11 bar develop the high pressure neurological syndrome (HPNS), manifesting as central nervous system (CNS) hyperexcitability, motor disturbances, sensory impairment, and cognitive deficits. The glutamate-type N-methyl-D-aspartate receptor (NMDAR) has been implicated in the CNS hyperexcitability of HPNS. NMDARs containing different subunits exhibited varying degrees of increased/decreased current at high pressure. The mechanisms underlying this phenomenon remain unclear. We performed 100 ns molecular dynamics (MD) simulations of the NMDAR structure embedded in a dioleoylphosphatidylcholine (DOPC) lipid bilayer solvated in water at 1 bar, hydrostatic 25 bar, and in helium at 25 bar. MD simulations showed that in contrast to hydrostatic pressure, high pressure helium causes substantial distortion of the DOPC membrane due to its accumulation between the two monolayers: reduction of the Sn-1 and Sn-2 DOPC chains and helium-dependent dehydration of the NMDAR pore. Further analysis of important regions of the NMDAR protein such as pore surface (M2 α-helix), Mg binding site, and TMD-M4 α-helix revealed significant effects of helium. In contrast with previous models, these and our earlier results suggest that high pressure helium, not hydrostatic pressure per se, alters the receptor tertiary structure via protein-lipid interactions. Helium in divers' breathing mixtures may partially contribute to HPNS symptoms.
专业潜水员在暴露于 11 巴以上的环境压力下会患上高压神经综合征 (HPNS),表现为中枢神经系统 (CNS) 过度兴奋、运动障碍、感觉障碍和认知缺陷。谷氨酸型 N-甲基-D-天冬氨酸受体 (NMDAR) 被认为与 HPNS 的中枢神经系统过度兴奋有关。在高压下,含有不同亚基的 NMDAR 表现出不同程度的电流增加/减少。这种现象的机制尚不清楚。我们对嵌入在水中的二油酰基磷脂酰胆碱 (DOPC) 脂质双层中的 NMDAR 结构进行了 100 纳秒分子动力学 (MD) 模拟,模拟条件分别为 1 巴的静水压力、25 巴的静水压力和 25 巴的氦气压力。MD 模拟表明,与静水压力相比,高压氦气会由于其在两个单层之间的积累而导致 DOPC 膜发生实质性变形:DOPC 链的 Sn-1 和 Sn-2 减少,以及 NMDAR 孔的氦依赖性去水。对 NMDAR 蛋白的重要区域(如孔表面(M2α-螺旋)、Mg 结合位点和 TMD-M4α-螺旋)进行进一步分析,揭示了氦气的显著影响。与之前的模型不同,这些和我们之前的结果表明,高压氦气而不是静水压力本身通过蛋白-脂质相互作用改变受体的三级结构。潜水员呼吸混合物中的氦气可能部分导致 HPNS 症状。