Suppr超能文献

利用PubMed生成医疗保健调查研究参与者的电子邮件列表:一种简单实用的方法。

Using PubMed to Generate Email Lists of Participants for Healthcare Survey Research: A Simple and Practical Approach.

作者信息

Khalifa Mohamed

机构信息

Centre for Health Informatics, Australian Institute of Health Innovation, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia.

出版信息

Stud Health Technol Inform. 2019 Jul 4;262:348-351. doi: 10.3233/SHTI190090.

Abstract

Survey research is one of the most essential domains of evaluation and measurement in healthcare and social sciences. Online surveys are considered the most economical of the three main data collection methods, followed by telephone interviewing, while face-to-face interviewing is the most expensive. Even though they have many advantages, online surveys have very low response rates. The objective of this paper is to demonstrate a practical and simply replicable approach for using PubMed to generate large email lists of potential participants for healthcare survey research. In addition to personalizing each email, researchers can use a range of strategies to improve the response rate, including sending reminders, adding the updated response rate to the reminders, and stating the average time it would take participants to complete the survey. Moreover, acknowledging participants, using financial and non-financial incentives and contacting participants through their affiliated organization, can significantly improve participants response rate.

摘要

调查研究是医疗保健和社会科学中评估与测量的最重要领域之一。在线调查被认为是三种主要数据收集方法中最经济的,其次是电话访谈,而面对面访谈则是最昂贵的。尽管在线调查有许多优点,但它们的回复率非常低。本文的目的是展示一种实用且易于复制的方法,用于利用PubMed生成医疗保健调查研究潜在参与者的大型电子邮件列表。除了个性化每封电子邮件外,研究人员还可以使用一系列策略来提高回复率,包括发送提醒、在提醒中添加更新后的回复率,以及说明参与者完成调查所需的平均时间。此外,对参与者表示感谢、使用经济和非经济激励措施以及通过其附属组织联系参与者,可以显著提高参与者的回复率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验