Rossi Tuomas P, Shegai Timur, Erhart Paul, Antosiewicz Tomasz J
Department of Physics, Chalmers University of Technology, 412 96, Gothenburg, Sweden.
Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland.
Nat Commun. 2019 Jul 26;10(1):3336. doi: 10.1038/s41467-019-11315-5.
Strong light-matter interactions in both the single-emitter and collective strong coupling regimes attract significant attention due to emerging applications in quantum and nonlinear optics as well as opportunities for modifying material-related properties. Exploration of these phenomena is theoretically demanding, as polaritons exist at the intersection between quantum optics, solid state physics, and quantum chemistry. Fortunately, nanoscale polaritons can be realized in small plasmon-molecule systems, enabling treatment with ab initio methods. Here, we show that time-dependent density-functional theory calculations access the physics of nanoscale plasmon-molecule hybrids and predict vacuum Rabi splitting. By considering a system comprising a few-hundred-atom aluminum nanoparticle interacting with benzene molecules, we show that cavity quantum electrodynamics holds down to resonators of a few cubic nanometers in size, yielding a single-molecule coupling strength exceeding 200 meV due to a massive vacuum field of 4.5 V · nm. In a broader perspective, ab initio methods enable parameter-free in-depth studies of polaritonic systems for emerging applications.
单发射体和集体强耦合机制中的强光-物质相互作用因其在量子和非线性光学中的新兴应用以及改变材料相关特性的机会而备受关注。由于极化激元存在于量子光学、固态物理和量子化学的交叉点上,对这些现象的探索在理论上具有挑战性。幸运的是,纳米级极化激元可以在小型等离子体-分子系统中实现,从而能够采用从头算方法进行处理。在此,我们表明含时密度泛函理论计算能够探究纳米级等离子体-分子杂化体的物理特性并预测真空拉比分裂。通过考虑一个由几百个原子的铝纳米颗粒与苯分子相互作用组成的系统,我们表明腔量子电动力学在尺寸仅为几立方纳米的谐振器中仍然适用,由于4.5 V·nm的巨大真空场,产生了超过200 meV的单分子耦合强度。从更广泛的角度来看,从头算方法能够对极化激元系统进行无参数的深入研究,以用于新兴应用。