Wang Derek S, Neuman Tomáš, Flick Johannes, Narang Prineha
Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.
Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA.
J Chem Phys. 2021 Mar 14;154(10):104109. doi: 10.1063/5.0036283.
Cavity-mediated light-matter coupling can dramatically alter opto-electronic and physico-chemical properties of a molecule. Ab initio theoretical predictions of these systems need to combine non-perturbative, many-body electronic structure theory-based methods with cavity quantum electrodynamics and theories of open-quantum systems. Here, we generalize quantum-electrodynamical density functional theory to account for dissipative dynamics of the cavity and describe coupled cavity-single molecule interactions in the weak-to-strong-coupling regimes. Specifically, to establish this generalized technique, we study excited-state dynamics and spectral responses of benzene and toluene under weak-to-strong light-matter coupling. By tuning the coupling, we achieve cavity-mediated energy transfer between electronically excited states. This generalized ab initio quantum-electrodynamical density functional theory treatment can be naturally extended to describe cavity-mediated interactions in arbitrary electromagnetic environments, accessing correlated light-matter observables and thereby closing the gap between electronic structure theory, quantum optics, and nanophotonics.
腔介导的光与物质耦合可显著改变分子的光电和物理化学性质。对这些系统进行从头算理论预测需要将基于非微扰多体电子结构理论的方法与腔量子电动力学及开放量子系统理论相结合。在此,我们推广量子电动力学密度泛函理论以考虑腔的耗散动力学,并描述弱耦合到强耦合 regime 下的腔 - 单分子相互作用。具体而言,为建立这种广义技术,我们研究了苯和甲苯在弱到强光与物质耦合下的激发态动力学和光谱响应。通过调节耦合,我们实现了电子激发态之间的腔介导能量转移。这种广义的从头算量子电动力学密度泛函理论处理方法可以自然地扩展到描述任意电磁环境中的腔介导相互作用,获取相关的光与物质可观测量,从而弥合电子结构理论、量子光学和纳米光子学之间的差距。