Metaferia Wondwosen, Schulte Kevin L, Simon John, Johnston Steve, Ptak Aaron J
National Renewable Energy Laboratory, Golden, CO, 80401, USA.
Nat Commun. 2019 Jul 26;10(1):3361. doi: 10.1038/s41467-019-11341-3.
We report gallium arsenide (GaAs) growth rates exceeding 300 µm h using dynamic hydride vapor phase epitaxy. We achieved these rates by maximizing the gallium to gallium monochloride conversion efficiency, and by utilizing a mass-transport-limited growth regime with fast kinetics. We also demonstrate gallium indium phosphide growth at rates exceeding 200 µm h using similar growth conditions. We grew GaAs solar cell devices by incorporating the high growth rate of GaAs and evaluated its material quality at these high rates. Solar cell growth rates ranged from 35 to 309 µm h with open circuit voltages ranging from 1.04 to 1.07 V. The best devices exceeded 25% efficiency under the AM1.5 G solar spectrum. The high open-circuit voltages indicate that high material quality can be maintained at these extremely high growth rates. These results have strong implications toward lowering the deposition cost of III-V materials potentially enabling the deposition of high efficiency devices in mere seconds.
我们报道了使用动态氢化物气相外延法实现的砷化镓(GaAs)生长速率超过300 µm/h。我们通过最大化镓向一氯化镓的转化效率,并利用具有快速动力学的传质限制生长模式来实现这些速率。我们还展示了在类似生长条件下磷化镓铟的生长速率超过200 µm/h。我们通过纳入高生长速率的GaAs来生长GaAs太阳能电池器件,并在这些高生长速率下评估其材料质量。太阳能电池的生长速率范围为35至309 µm/h,开路电压范围为1.04至1.07 V。在AM1.5 G太阳光谱下,最佳器件的效率超过25%。高开路电压表明在这些极高的生长速率下可以保持高材料质量。这些结果对于降低III-V族材料的沉积成本具有重要意义,有可能在短短几秒钟内实现高效器件的沉积。