Rodrigues Adriana, Kamath Anagha, Illner Hannah-Sophie, Kafi Navid, Skibitzki Oliver, Schmidbauer Martin, Hatami Fariba
Institut für Physik, Humboldt Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany.
IHP-Leibniz Institut für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany.
Nanomaterials (Basel). 2025 Jul 12;15(14):1083. doi: 10.3390/nano15141083.
The monolithic integration of III-V semiconductors with silicon (Si) is a critical step toward advancing optoelectronic and photonic devices. In this work, we present GaAs nanoheteroepitaxy (NHE) on Si nanotips using gas-source molecular beam epitaxy (GS-MBE). We discuss the selective growth of fully relaxed GaAs nanoislands on complementary metal oxide semiconductor (CMOS)-compatible Si(001) nanotip wafers. Nanotip wafers were fabricated using a state-of-the-art 0.13 μm SiGe Bipolar CMOS pilot line on 200 mm wafers. Our investigation focuses on understanding the influence of the growth conditions on the morphology, crystalline structure, and defect formation of the GaAs islands. The morphological, structural, and optical properties of the GaAs islands were characterized using scanning electron microscopy, high-resolution X-ray diffraction, and photoluminescence spectroscopy. For samples with less deposition, the GaAs islands exhibit a monomodal size distribution, with an average effective diameter ranging between 100 and 280 nm. These islands display four distinct facet orientations corresponding to the {001} planes. As the deposition increases, larger islands with multiple crystallographic facets emerge, accompanied by a transition from a monomodal to a bimodal growth mode. Single twinning is observed in all samples. However, with increasing deposition, not only a bimodal size distribution occurs, but also the volume fraction of the twinned material increases significantly. These findings shed light on the growth dynamics of nanoheteroepitaxial GaAs and contribute to ongoing efforts toward CMOS-compatible Si-based nanophotonic technologies.
将III-V族半导体与硅(Si)进行单片集成是推进光电器件和光子器件发展的关键一步。在这项工作中,我们使用气态源分子束外延(GS-MBE)技术在硅纳米尖上实现了砷化镓纳米异质外延(NHE)。我们讨论了在互补金属氧化物半导体(CMOS)兼容的Si(001)纳米尖晶片上完全弛豫的砷化镓纳米岛的选择性生长。纳米尖晶片是使用最先进的0.13μm硅锗双极CMOS中试生产线在200mm晶片上制造的。我们的研究重点是了解生长条件对砷化镓岛的形态、晶体结构和缺陷形成的影响。使用扫描电子显微镜、高分辨率X射线衍射和光致发光光谱对砷化镓岛的形态、结构和光学性质进行了表征。对于沉积量较少的样品,砷化镓岛呈现单峰尺寸分布,平均有效直径在100至280nm之间。这些岛显示出对应于{001}平面的四个不同的晶面取向。随着沉积量的增加,出现了具有多个晶体学晶面的更大的岛,同时伴随着从单峰生长模式到双峰生长模式的转变。在所有样品中都观察到了单孪晶。然而,随着沉积量的增加,不仅出现了双峰尺寸分布,而且孪晶材料的体积分数也显著增加。这些发现揭示了纳米异质外延砷化镓的生长动力学,并有助于推动与CMOS兼容的硅基纳米光子技术的持续发展。