College of Computing and Informatics, Providence University, Taichung, Taiwan.
Laboratoire Mathématiques et Informatique pour la Complexité et les Systèmes, CentraleSupélec, 91190, Gif-sur-Yvette, France.
Sci Rep. 2019 Jul 26;9(1):10883. doi: 10.1038/s41598-019-46622-w.
The gray level run length matrix (GLRLM) whose entries are statistics recording distribution and relationship of images pixels is a widely used method for extracting statistical features for medical images, e.g., magnetic resonance (MR) images. Recently these features are usually employed in some artificial neural networks to identify and distinguish texture patterns. But GLRLM construction and features extraction are tedious and computationally intensive while the images are too big with high resolution, or there are too many small or intermediate Regions of Interest (ROI) to process in a single image, which makes the preprocess a time consuming stage. Hence, it is of great importance to accelerate the procedure which is nowadays possible with the rapid development of massively parallel Graphics Processing Unit, i.e. the GPU computing technology. In this article, we propose a new paradigm based on mature parallel primitives for generating GLRLMs and extracting multiple features for many ROIs simultaneously in a single image. Experiments show that such a paradigm is easy to implement and offers an acceleration over 5 fold increase in speed than an optimized serial counterpart.
灰度游程长度矩阵(GLRLM)的条目是记录图像像素分布和关系的统计信息,是一种广泛用于提取医学图像(例如磁共振(MR)图像)统计特征的方法。最近,这些特征通常被用于一些人工神经网络中以识别和区分纹理模式。但是,GLRLM 的构建和特征提取既繁琐又计算密集,特别是当图像分辨率较高且过大、或者单个图像中有太多小或中等大小的感兴趣区域(ROI)需要处理时,这使得预处理成为一个耗时的阶段。因此,加速这一过程非常重要,而如今随着大规模并行图形处理单元(即 GPU 计算技术)的快速发展,这已经成为可能。在本文中,我们提出了一种新的范例,该范例基于成熟的并行原语,可在单个图像中同时为多个 ROI 生成 GLRLM 并提取多个特征。实验表明,这种范例易于实现,并比优化的串行对应物提供了超过 5 倍的速度提升。