Suppr超能文献

阴道镜图像分类器:一种用于宫颈图像分类的混合框架。

ColpoClassifier: A Hybrid Framework for Classification of the Cervigrams.

作者信息

Kalbhor Madhura, Shinde Swati

机构信息

Department of Computer Engineering, Pimpri Chinchwad College of Engineering, Pune 411044, India.

出版信息

Diagnostics (Basel). 2023 Mar 14;13(6):1103. doi: 10.3390/diagnostics13061103.

Abstract

Colposcopy plays a vital role in detecting cervical cancer. Artificial intelligence-based methods have been implemented in the literature for the classification of colposcopy images. However, there is a need for a more effective method that can accurately classify cervigrams. In this paper, ColpoClassifier, a hybrid framework for the classification of cervigrams, is proposed, which consists of feature extraction followed by classification. This paper uses a Gray-level co-occurrence matrix (GLCM), a Gray-level run length matrix (GLRLM), and a histogram of gradients (HOG) for feature extraction. These features are combined to form a feature fusion vector of the form GLCM + GLRLM + HOG. The different machine learning classifiers are used for classification by using individual feature vectors as well as feature fusion vectors. The dataset used in this paper is compiled by downloading images from the WHO website. Two variants of this dataset are created, Dataset-I contains images of the aceto-whitening effect, green filter, iodine application, and raw cervigram while Dataset-II only contains images of the aceto-whitening effect. This paper presents the classification performance on all kinds of images with the individual as well as hybrid feature fusion vector and concludes that hybrid feature fusion vectors on aceto-whitening images have given the best results.

摘要

阴道镜检查在宫颈癌检测中起着至关重要的作用。文献中已采用基于人工智能的方法对阴道镜图像进行分类。然而,需要一种更有效的方法来准确分类宫颈图像。本文提出了一种用于宫颈图像分类的混合框架ColpoClassifier,它由特征提取和分类组成。本文使用灰度共生矩阵(GLCM)、灰度游程长度矩阵(GLRLM)和梯度直方图(HOG)进行特征提取。这些特征被组合形成GLCM + GLRLM + HOG形式的特征融合向量。通过使用单个特征向量以及特征融合向量,采用不同的机器学习分类器进行分类。本文使用的数据集是通过从世界卫生组织网站下载图像编译而成的。创建了该数据集的两个变体,数据集-I包含醋酸白试验效果、绿色滤镜、碘染色和原始宫颈图像,而数据集-II仅包含醋酸白试验效果的图像。本文展示了使用单个特征向量以及混合特征融合向量对各类图像的分类性能,并得出结论:醋酸白图像上的混合特征融合向量取得了最佳结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7d5/10047578/ac22321f8fd9/diagnostics-13-01103-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验