Molina David, Pérez-Beteta Julián, Martínez-González Alicia, Martino Juan, Velásquez Carlos, Arana Estanislao, Pérez-García Víctor M
Instituto de Matemática Aplicada a la Ciencia y la Ingeniería, Universidad de Castilla-La Mancha, Spain.
Instituto de Matemática Aplicada a la Ciencia y la Ingeniería, Universidad de Castilla-La Mancha, Spain.
Comput Biol Med. 2016 Nov 1;78:49-57. doi: 10.1016/j.compbiomed.2016.09.011. Epub 2016 Sep 15.
Tumor heterogeneity in medical imaging is a current research trend due to its potential relationship with tumor malignancy. The aim of this study is to analyze the effect of dynamic range and matrix size changes on the results of different heterogeneity measures.
Four patients harboring three glioblastomas and one metastasis were considered. Sixteen textural heterogeneity measures were computed for each patient, with a configuration including co-occurrence matrices (CM) features (local heterogeneity) and run-length matrices (RLM) features (regional heterogeneity). The coefficient of variation measured agreement between the textural measures in two types of experiments: (i) fixing the matrix size and changing the dynamic range and (ii) fixing the dynamic range and changing the matrix size.
None of the measures considered were robust under dynamic range changes. The CM Entropy and the RLM high gray-level run emphasis (HGRE) were the outstanding textural features due to their robustness under matrix size changes. Also, the RLM low gray-level run emphasis (LGRE) provided robust results when the dynamic range considered was sufficiently high (more than 8 levels). All of the remaining textural features were not robust.
Tumor texture studies based on images with different characteristics (e.g. multi-center studies) should first fix the dynamic range to be considered. For studies involving images of different resolutions either (i) only robust measures should be used (in our study CM entropy, RLM HGRE and/or RLM LGRE) or (ii) images should be resampled to match those of the lowest resolution before computing the textural features.
医学成像中的肿瘤异质性因其与肿瘤恶性程度的潜在关系而成为当前的研究趋势。本研究旨在分析动态范围和矩阵大小变化对不同异质性测量结果的影响。
纳入了四名患者,其中三名患有胶质母细胞瘤,一名患有转移瘤。为每位患者计算了16种纹理异质性测量指标,其配置包括共生矩阵(CM)特征(局部异质性)和游程长度矩阵(RLM)特征(区域异质性)。变异系数测量了两种实验中纹理测量之间的一致性:(i)固定矩阵大小并改变动态范围;(ii)固定动态范围并改变矩阵大小。
在动态范围变化下,所考虑的测量指标均不稳健。CM熵和RLM高灰度级游程强调(HGRE)是突出的纹理特征,因为它们在矩阵大小变化时具有稳健性。此外,当所考虑的动态范围足够高(超过8级)时,RLM低灰度级游程强调(LGRE)也能提供稳健的结果。其余所有纹理特征均不稳健。
基于具有不同特征的图像进行的肿瘤纹理研究(例如多中心研究)应首先固定要考虑的动态范围。对于涉及不同分辨率图像的研究,要么(i)仅使用稳健的测量指标(在我们的研究中为CM熵、RLM HGRE和/或RLM LGRE),要么(ii)在计算纹理特征之前对图像进行重采样,使其与最低分辨率的图像相匹配。