Suppr超能文献

解析 GSNOR 介导的 S-亚硝基化和番茄植株中的多个发育程序。

Unravelling GSNOR-Mediated S-Nitrosylation and Multiple Developmental Programs in Tomato Plants.

机构信息

State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, P.R. China.

Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, P.R. China.

出版信息

Plant Cell Physiol. 2019 Nov 1;60(11):2523-2537. doi: 10.1093/pcp/pcz143.

Abstract

Nitric oxide (NO) impacts multiple developmental events and stress responses in plants. S-nitrosylation, regulated by S-nitrosoglutathione reductase (GSNOR), is considered as an important route for NO bioactivity. However, genetic evidence for GSNOR-mediated plant development and S-nitrosylation remains elusive in crop species. Genetic and site-specific nitrosoproteomic approach was used to obtain GSNOR-mediated phenotype and S-nitrosylated network. Knockdown of GSNOR increased the endogenous NO level and S-nitrosylation, resulting in higher germination rate, inhibition of root and hypocotyl growth, decreased photosynthesis, reduced plant growth, altered plant architecture, dysplastic pollen grains, and low fructification rate and fruit yield. For nitrosoproteomic analysis, 395 endogenously S-nitrosylated proteins with 554 S-nitrosylation sites were identified within a wide range of biological processes, especially for energy metabolism. Physiological and exogenous energy-support testing were consistent with the omic result, suggesting that GSNOR-mediated S-nitrosylation of energy metabolism plays key roles in impacting plant growth and development. Taken together, GSNOR is actively involved in the regulation of multiple developmental processes related to agronomically important traits. In addition, our results provide valuable resources and new clues for the study of S-nitrosylation-regulated metabolism in plants.

摘要

一氧化氮(NO)影响植物的多种发育事件和应激反应。由 S-亚硝基谷胱甘肽还原酶(GSNOR)调节的 S-亚硝基化被认为是 NO 生物活性的重要途径。然而,在作物物种中,GSNOR 介导的植物发育和 S-亚硝基化的遗传证据仍然难以捉摸。遗传和位点特异性硝态蛋白质组学方法用于获得 GSNOR 介导的表型和 S-亚硝基化网络。GSNOR 的敲低增加了内源性 NO 水平和 S-亚硝基化,导致更高的发芽率、抑制根和下胚轴生长、降低光合作用、减少植物生长、改变植物结构、畸形花粉粒以及低结实率和果实产量。对于硝态蛋白质组学分析,在广泛的生物学过程中鉴定了 395 种内源性 S-亚硝基化蛋白,其中 554 个 S-亚硝基化位点。生理和外源能量支持测试与组学结果一致,表明 GSNOR 介导的能量代谢的 S-亚硝基化在影响植物生长和发育中起着关键作用。总之,GSNOR 积极参与与农艺重要性状相关的多种发育过程的调节。此外,我们的结果为研究植物中 S-亚硝基化调节的代谢提供了有价值的资源和新线索。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验