College of Computer Science.
Medical Big Data Center, Sichuan University, Chengdu 610065, China.
Bioinformatics. 2021 Jul 12;37(11):1554-1561. doi: 10.1093/bioinformatics/btz542.
The growth and survival of myeloma cells are greatly affected by their surrounding microenvironment. To understand the molecular mechanism and the impact of stiffness on the fate of myeloma-initiating cells (MICs), we develop a systems biological model to reveal the dynamic regulations by integrating reverse-phase protein array data and the stiffness-associated pathway.
We not only develop a stiffness-associated signaling pathway to describe the dynamic regulations of the MICs, but also clearly identify three critical proteins governing the MIC proliferation and death, including FAK, mTORC1 and NFκB, which are validated to be related with multiple myeloma by our immunohistochemistry experiment, computation and manually reviewed evidences. Moreover, we demonstrate that the systematic model performs better than widely used parameter estimation algorithms for the complicated signaling pathway.
We can not only use the systems biological model to infer the stiffness-associated genetic signaling pathway and locate the critical proteins, but also investigate the important pathways, proteins or genes for other type of the cancer. Thus, it holds universal scientific significance.
Supplementary data are available at Bioinformatics online.
骨髓瘤细胞的生长和存活受其周围微环境的影响很大。为了了解硬度对骨髓瘤起始细胞(MICs)命运的分子机制和影响,我们开发了一个系统生物学模型,通过整合反相蛋白阵列数据和与硬度相关的途径来揭示动态调控。
我们不仅开发了一个与硬度相关的信号通路来描述 MICs 的动态调控,而且还清楚地确定了三个关键蛋白,它们控制着 MIC 的增殖和死亡,包括 FAK、mTORC1 和 NFκB,我们的免疫组织化学实验、计算和手动审查证据表明,这些蛋白与多发性骨髓瘤有关。此外,我们证明,对于复杂的信号通路,系统模型的性能优于广泛使用的参数估计算法。
我们不仅可以使用系统生物学模型来推断与硬度相关的遗传信号通路和定位关键蛋白,还可以研究其他类型癌症的重要途径、蛋白或基因。因此,它具有普遍的科学意义。
补充数据可在生物信息学在线获得。