Suppr超能文献

基于集成数据挖掘技术和特征选择方法的皮肤病预测-对比研究。

Prediction of Skin Disease Using Ensemble Data Mining Techniques and Feature Selection Method-a Comparative Study.

机构信息

MCA Department, VBS Purvanchal University, Jaunpur, 222002, Uttar Pradesh, India.

出版信息

Appl Biochem Biotechnol. 2020 Feb;190(2):341-359. doi: 10.1007/s12010-019-03093-z. Epub 2019 Jul 27.

Abstract

Nowadays, skin disease is a major problem among peoples worldwide. Different machine learning techniques are applied to predict the various classes of skin disease. In this research paper, we have applied six different machine learning algorithm to categorize different classes of skin disease using three ensemble techniques and then a feature selection method to compare the results obtained from different machine learning techniques. In the proposed study, we present a new method, which applies six different data mining classification techniques and then developed an ensemble approach using bagging, AdaBoost, and gradient boosting classifiers techniques to predict the different classes of skin disease. Further, the feature importance method is used to select important 15 features which play a major role in prediction. A subset of the original dataset is obtained after selecting only 15 features to compare the results of used six machine learning techniques and ensemble approach as on the whole dataset. The ensemble method used on skin disease dataset is compared with the new subset of the original dataset obtained from feature selection method. The outcome shows that the dermatological prediction accuracy of the test dataset is increased compared with an individual classifier and a better accuracy is obtained as compared with subset obtained from feature selection method. The ensemble method and feature selection used on dermatology datasets give better performance as compared with individual classifier algorithms. Ensemble method gives more accurate and effective skin disease prediction.

摘要

如今,皮肤疾病是全世界人民的主要问题。不同的机器学习技术被应用于预测各种皮肤疾病类别。在本研究论文中,我们应用了六种不同的机器学习算法,使用三种集成技术和特征选择方法对不同的皮肤疾病类别进行分类,然后比较来自不同机器学习技术的结果。在提出的研究中,我们提出了一种新方法,该方法应用了六种不同的数据挖掘分类技术,然后使用装袋、AdaBoost 和梯度提升分类器技术开发了一种集成方法,以预测不同的皮肤疾病类别。此外,使用特征重要性方法选择在预测中起主要作用的 15 个重要特征。在选择仅 15 个特征后,从原始数据集的一个子集获得,以比较使用的六种机器学习技术和集成方法与从特征选择方法获得的原始数据集的子集的结果。在皮肤疾病数据集上使用的集成方法与从特征选择方法获得的原始数据集的新子集进行比较。结果表明,与单个分类器相比,测试数据集的皮肤病预测准确性有所提高,与从特征选择方法获得的子集相比,获得了更好的准确性。在皮肤病数据集上使用的集成方法和特征选择方法比单个分类器算法具有更好的性能。集成方法可以更准确、有效地进行皮肤疾病预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验