Suppr超能文献

调控 ETS 融合阴性前列腺癌遗传复杂性的分子基础。

Molecular Underpinnings Governing Genetic Complexity of ETS-Fusion-Negative Prostate Cancer.

机构信息

Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India.

Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India.

出版信息

Trends Mol Med. 2019 Nov;25(11):1024-1038. doi: 10.1016/j.molmed.2019.07.001. Epub 2019 Jul 25.

Abstract

Inter- and intra-patient molecular heterogeneity of primary and metastatic prostate cancer (PCa) confers variable clinical outcome and poses a formidable challenge in disease management. High-throughput integrative genomics and functional approaches have untangled the complexity involved in this disease and revealed a spectrum of diverse aberrations prevalent in various molecular subtypes, including ETS fusion negative. Emerging evidence indicates that SPINK1 upregulation, mutations in epigenetic regulators or chromatin modifiers, and SPOP are associated with the ETS-fusion negative subtype. Additionally, patients with defects in a DNA-repair pathway respond to poly-(ADP-ribose)-polymerase (PARP) inhibition therapies. Furthermore, a new class of immunogenic subtype defined by CDK12 biallelic loss has also been identified in ETS-fusion-negative cases. This review focuses on the emerging molecular underpinnings driving key oncogenic aberrations and advancements in therapeutic strategies of this disease.

摘要

原发和转移性前列腺癌(PCa)的患者内和患者间分子异质性导致不同的临床结局,并对疾病管理构成了巨大挑战。高通量的整合基因组学和功能方法已经理清了该疾病的复杂性,并揭示了各种分子亚型中普遍存在的一系列不同的异常,包括 ETS 融合阴性。新出现的证据表明,丝氨酸蛋白酶抑制剂 K1(SPINK1)上调、表观遗传调节剂或染色质修饰剂突变以及 SPOP 与 ETS 融合阴性亚型相关。此外,存在 DNA 修复途径缺陷的患者对聚(ADP-核糖)聚合酶(PARP)抑制治疗有反应。此外,在 ETS 融合阴性病例中,还发现了一种新的免疫原性亚型,其特征是 CDK12 双等位基因缺失。本综述重点介绍了推动关键致癌异常的新兴分子基础,以及该疾病治疗策略的进展。

相似文献

1
Molecular Underpinnings Governing Genetic Complexity of ETS-Fusion-Negative Prostate Cancer.
Trends Mol Med. 2019 Nov;25(11):1024-1038. doi: 10.1016/j.molmed.2019.07.001. Epub 2019 Jul 25.
3
Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced Prostate Cancer.
Cell. 2018 Jun 14;173(7):1770-1782.e14. doi: 10.1016/j.cell.2018.04.034.
5
Molecular foundations for personalized therapy in prostate cancer.
Curr Drug Targets. 2015;16(2):103-14. doi: 10.2174/1389450115666141229154500.
6
SPOP mutations increase PARP inhibitor sensitivity via CK2/PIAS1/SPOP axis in prostate cancer.
JCI Insight. 2025 Apr 22;10(8). doi: 10.1172/jci.insight.186871.
8
Molecular profiling of ETS and non-ETS aberrations in prostate cancer patients from northern India.
Prostate. 2015 Jul 1;75(10):1051-62. doi: 10.1002/pros.22989. Epub 2015 Mar 23.
9
Racial Variations in Prostate Cancer Molecular Subtypes and Androgen Receptor Signaling Reflect Anatomic Tumor Location.
Eur Urol. 2016 Jul;70(1):14-17. doi: 10.1016/j.eururo.2015.09.031. Epub 2015 Oct 9.
10

引用本文的文献

3
Focus on the tumor microenvironment: A seedbed for neuroendocrine prostate .
Front Cell Dev Biol. 2022 Jul 22;10:955669. doi: 10.3389/fcell.2022.955669. eCollection 2022.
4
SPINKs in Tumors: Potential Therapeutic Targets.
Front Oncol. 2022 Feb 11;12:833741. doi: 10.3389/fonc.2022.833741. eCollection 2022.
6
Epidemiology and genomics of prostate cancer in Asian men.
Nat Rev Urol. 2021 May;18(5):282-301. doi: 10.1038/s41585-021-00442-8. Epub 2021 Mar 10.
7
Androgen-Driven Fusion Genes and Chimeric Transcripts in Prostate Cancer.
Front Cell Dev Biol. 2021 Feb 9;9:623809. doi: 10.3389/fcell.2021.623809. eCollection 2021.
9
Dynamics of Cellular Plasticity in Prostate Cancer Progression.
Front Mol Biosci. 2020 Jul 10;7:130. doi: 10.3389/fmolb.2020.00130. eCollection 2020.

本文引用的文献

2
CHD1 Loss Alters AR Binding at Lineage-Specific Enhancers and Modulates Distinct Transcriptional Programs to Drive Prostate Tumorigenesis.
Cancer Cell. 2019 Apr 15;35(4):603-617.e8. doi: 10.1016/j.ccell.2019.03.001. Epub 2019 Mar 28.
3
New Hope in Prostate Cancer Precision Medicine? miRNA Replacement and Epigenetics.
Clin Cancer Res. 2019 May 1;25(9):2679-2681. doi: 10.1158/1078-0432.CCR-19-0061. Epub 2019 Feb 26.
5
Epigenetic Silencing of miRNA-338-5p and miRNA-421 Drives SPINK1-Positive Prostate Cancer.
Clin Cancer Res. 2019 May 1;25(9):2755-2768. doi: 10.1158/1078-0432.CCR-18-3230. Epub 2018 Dec 26.
6
Frequent mutation of the untranslated region in prostate cancer.
Commun Biol. 2018 Aug 24;1:122. doi: 10.1038/s42003-018-0128-1. eCollection 2018.
8
Correction: Wild-type and mutated IDH1/2 enzymes and therapy responses.
Oncogene. 2018 Oct;37(43):5810. doi: 10.1038/s41388-018-0455-1.
9
SPOP-Mutated/CHD1-Deleted Lethal Prostate Cancer and Abiraterone Sensitivity.
Clin Cancer Res. 2018 Nov 15;24(22):5585-5593. doi: 10.1158/1078-0432.CCR-18-0937. Epub 2018 Aug 1.
10
Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer.
Cell. 2018 Jul 26;174(3):758-769.e9. doi: 10.1016/j.cell.2018.06.039. Epub 2018 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验